
SUPPLEMENTARY: SEMANTIC PRIORS FOR IID 1

Semantic Priors for Intrinsic Image
Decomposition (Supplementary)

Saurabh Saini
saurabh.saini@research.iiit.ac.in

P. J. Narayanan
pjn@iiit.ac.in

CVIT, KCIS,
International Institute of Information
Technology-Hyderabad,
India

1 Semantic Features Analysis

Figure 1: Visualizing selective search features. From left-to-right: Original image; four sample
mask images from MCG (binary masks overlaid on the image for visualization) and dimensionality
reduced image of selective search features (gi) used for encoding class agnostic semantic information.

1.1 Visualization for Selective Search Features
Our selective search features are formed by concatenating various mask values at a particular
pixel, weighted by MCG [1] ‘objectness’ score. We do dimensionality reduction on these
features using PCA for efficient computation during reflectance formulation. We use dimen-
sionality reduced features in Stage 2 of the framework unlike Stage 1 as the mid-level priors
are re recomputed only in this stage in each iteration. We found no significant change in
performance due to this during experimentation. Figure 1 shows a few sample sample masks
(overlaid over the image for visualization) and the ‘PCA-image’ (formed by reducing the
dimensions to 3) for an example image. Note how in the ‘PCA-image’ the regions belonging
to the same object get clustered together illustrating how our selective search features, giś
encode mid-level semantics.

1.2 Ablation Analysis
As mentioned in the main paper, in order to study the effects of various priors on the qual-
ity of Intrinsic Image Decomposition (IID), we experimented with several variants of our
framework in an ablation analysis. The IID results obtained using these variants are shown
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Figure 2: v3 and v7 comparison. From left to right: Original image, v3 reflectance and v7 reflectance
respectively. Note how the color tone of reflectance results from v3 is incorrect although overall v3
shows better performance than v7 when evaluated using WHDR metric.

in Figure 4. Note, v1 has very little structural information as most of the shading priors are
missing and hence derives results mainly based on color information. This causes incorrect
IID reflectance as shown in column 1. v2 brings structural information in the form of Sg but
in a few cases is unstable as no mid-level semantic information is present. v3 gives signif-
icantly better results compared to previous two as it has nearly all the priors but for several
images leads to incorrect global reflectance tone (See image 3 and Figure 2) due to lack of
global shading information. v4 and v5 give good reflectance results but do not handle shad-
ows and lights well (See table shadow in image 2 and lamp in image 3). These are better
handled by v6 due to our semantic prior Rm. As mentioned above, v7 has global context
prior in addition to v3. This term although seems to degrade the framework performance
by a small margin during the ablation analysis (v3 WHDR = 18.15 v.s. v7 WHDR = 18.19)
but gives correct reflectance results as shown in Figure 2. This example also highlights the
shortcoming of relative metric like WHDR.

We use the values of the parameters for Split-Bregman iterations as provided by Bi et al.
[3] and empirically estimate the remaining parameters over a small subset of images. All
analysis and results in our main paper and supplementary are generated using these fixed set
of parameter values:

λg = λm = 0.002, λl = 2, γg = 1, γm = γl = 20, θ = 40, τ = 1.2, tc = 0.0001, tm = tb =
t = 0.05, k = 5

Figure 3: Sample images from IIW dataset.
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Figure 4: IID using different variants. In each scene from left-to-right: Results using variant v1, v2,
v3, v4, v5 and v6 on images shown in Figure 3 (v7 is visually very similar to v6 and hence not shown).
v3 gives good results as it contains all except one prior but does not handle global lighting well and
in some cases leads to incorrect reflectance colour tone (See lamps in 3rd and 4th images). v4 and
v5 lack mid-level reflectance sparsity term and is unable to remove the highlights from the scene (See
how in 4th and 5th columns light gradients and shadows are not removed). v6 introduces our semantic
mid-level reflectance sparsity and leads to better reflectance over v4 and v5.
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2 Additional IIW Results

In this section we provide additional results on IIW dataset introduced by [2]. A few sample
images from this dataset are shown in Figure 3. Below all results are arranged from left to
right as: Original image, reflectance and shading respectively in Figure 5, Figure 6, Figure 7,
Figure 8 and Figure 9.

Figure 5: Results on IIW dataset. In each row: Original image, reflectance and shading respectively.
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Figure 6: Results on IIW dataset. In each row: Original image, reflectance and shading respectively.
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Figure 7: Results on IIW dataset. In each row: Original image, reflectance and shading respectively.
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Figure 8: Results on IIW dataset. In each row: Original image, reflectance and shading respectively.
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Figure 9: Results on IIW dataset. In each row: Original image, reflectance and shading respectively.
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3 Qualitative Comparisons
We show additional qualitative comparisons with Bell et al. [2], Zhou et al. [4] and Bi et al.
[3] respectively, from left-to-right in Figure 10, Figure 11, Figure 12, Figure 13 and Fig-
ure 14. Our results are shown in the last column. Notice the persistence of noise and artifacts
in the results of the other three methods. Also our method is able to handle light sources and
soft shadows in the images better than the other methods.

Figure 10: Qualitative Comparison: In each row results by [2], [4], [3] and our method respectively.
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Figure 11: Qualitative Comparison: In each row results by [2], [4], [3] and our method respectively.
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Figure 12: Qualitative Comparison: In each row results by [2], [4], [3] and our method respectively.

Citation
Citation
{Bell, Bala, and Snavely} 2014

Citation
Citation
{Zhou, Krahenbuhl, and Efros} 2015

Citation
Citation
{Bi, Han, and Yu} 2015



12 SUPPLEMENTARY: SEMANTIC PRIORS FOR IID

Figure 13: Qualitative Comparison: In each row results by [2], [4], [3] and our method respectively.
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Figure 14: Qualitative Comparison: In each row results by [2], [4], [3] and our method respectively.
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4 Failure Cases

Figure 15 shows a few failure scenarios of our proposed framework. An often observed chal-
lenging case is that of images with sharp shadow and highlight regions. Owing to the lack of
depth data or some similar additional structural information, most single image IID methods
struggle in this task of disambiguation of such gradients from sharp object boundaries. Yet
another issue is distinguishing fine local textures in the same colour as object reflectance
and lighting variation. Our method is able to handle mid-level and large textures well due to
our semantic priors but in a few cases such textures get decomposed into the shading layer.
Notice how in the last image the textures on the table cloth are correctly deocmposed into the
reflectance layer but the textures on the wood owing to the same colour as that of the object
itself, get decomposed into the shading component.

Figure 15: Failure cases. Note incorrect decomposition in marked regions with challenging sharp
highlights, shadows and fine textures in a same colour.
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5 Additional Results on Random Internet Images:

To show the generality of our method, we provide additional results on several challenging
images from the Internet in Figure 16, Figure 17, Figure 18, Figure 19 and Figure 20. The
images represent a variety of image types: day, night, indoors, outdoors, macro, cityscapes,
paintings etc.

Figure 16: Additional results on random Internet images
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Figure 17: Additional results on random Internet images
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Figure 18: Additional results on random Internet images
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Figure 19: Additional results on random Internet images
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Figure 20: Additional results on random Internet images
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