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Figure 1: Left: Input to our system (only depth maps are used), Right: Output of our system, where first three meshes show SMPL model

tracked over time and last three meshes show Consensus meshes, reposed using SMPL

Abstract
Human body tracking typically requires specialized cap-

ture set-ups. Although pose tracking is available in con-
sumer devices like Microsoft Kinect, it is restricted to stick
figures visualizing body part detection. In this paper, we
propose a method for full 3D human body shape and mo-
tion capture of arbitrary movements from the depth channel
of a single Kinect, when the subject wears casual clothes.
We do not use the RGB channel or an initialization proce-
dure that requires the subject to move around in front of the
camera. This makes our method applicable for arbitrary
clothing textures and lighting environments, with minimal
subject intervention. Our method consists of 3D surface
feature detection and articulated motion tracking, which is
regularized by a statistical human body model [26]. We also
propose the idea of a Consensus Mesh (CMesh) which is the
3D template of a person created from a single view point.
We demonstrate tracking results on challenging poses and
argue that using CMesh along with statistical body models
can improve tracking accuracies. Quantitative evaluation
of our dense body tracking shows that our method has very
little drift which is improved by the usage of CMesh.

1. Introduction

Human shape and motion capture has been a largely

studied topic in the field of computer vision. Recently,

computer vision systems achieved 2D and 3D human body

tracking from a simple capture setup e.g. convolutional neu-

ral network (CNN) models can detect body parts in RGB

images [37]. However, these methods are not yet appli-

cable for full body shape and motion visualization. Many

applications in today’s scenario like biomechanical analy-

sis, medical rehabilitation etc. require motion tracking that

is broadly accurate not only with respect to the position of

the bone joints, but also on the surface of the skin.

Recently Bogo et al. [5] showed results on monocular

RGB-D Kinect sequences of freely moving subjects to con-

struct a detailed 3D reconstruction by doing coarse-to-fine

processing. Such methods work with subject wearing tight

fitting clothes. Models like Loper et al. [26] and Anguelov

et al. [2] have been created from a large pool of real-world

3D scans of people to address the problem of human shape

and motion capture. These models are accurate but they can

only be fitted to a person wearing extremely tight clothes. It

is challenging to track people in everyday clothing.

To this end we propose a novel pipeline for tracking peo-

ple in everyday clothing. Unlike prior methods, we take

only the depth channel as input, for the sake of simplicity

and independence to illumination conditions and clothing

texture. An important distinctive element of our method is

that we do not rely on 3D body part detection e.g. using

the Microsoft Kinect API or a deep neural-network model

trained for this purpose. This makes our method a useful

baseline method, which can be improved by such features

or from alternative information channels such as RGB data.
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Figure 2: Block Diagram of our proposed method. First we process depth maps to generate triangulated meshes. We use these along with

SMPL [26] model for manual initialization for first frame. After that we iterate between the Mesh Alignment and SMPL Registration stages

for each frame. The final tracked, pose aligned and shape adjusted SMPL mesh St+1 is generated as output. We also generate consensus

mesh of the person from a 360◦ sequence which is then reposed using ARAP.

In addition to above we also propose a novel Consensus
Mesh (CMesh) generation pipeline which refers to creating

a 3D template mesh of a subject from 360◦ sequences cap-

tured using a single Kinect. Readers please note that our

idea is not to create a high fidelity mesh, but a template

mesh which captures the topology of the subject in consid-

eration. Along with qualitative evaluation, we show quanti-

tative evaluation by treating output sequences of De Aguiar

et al. [14] and Vlasic et al. [35] as our ground truth. We

show that we achieve comparable tracking from just a

monocular depth input, with very little drift. We have also

shown that using the concept of a CMesh we can greatly im-

prove the tracking accuracy w.r.t. naked body models based

tracking, simply because of the fact that CMesh has a better

adherence to topology of the person. We have made several

novel contributions :

1. We propose a novel tracking pipeline which consists of

3D HKS (heat-kernel signature) driven non-rigid ICP,

articulated skeleton tracking and regularization by a

statistical human body model, for fitting a 3D mesh

template to a point cloud sequence.

2. We propose a body pose refinement step that uses sta-

tistical human body model for correspondence compu-

tation, and produces smooth trajectories over time.

3. We believe that we are the first to do temporal tracking

on monocular depth input for subjects wearing casual

clothes, using a statistical body model. We show track-

ing results for a variety of clothing styles and challeng-

ing poses.

4. We propose a pipeline to create a Consensus mesh
(CMesh) using a single Kinect. Repositioning of the

CMesh is shown to reduce quantitative drift and geo-

metric errors in clothed models.

2. Related Work

As our goal is towards building a framework enabling

a low-cost, easily-deployable pose tracking system without

any restriction on clothing, we will focus only on marker-

less methods. We also want to estimate unrestricted body

motion, so we exclude methods that recognize specific

movements or track specific motion cycles from our review.

Based on the complexity of data acquisition process, we can

split human body motion capture methods into two groups.

The first group consists of methods which require complex

3D data capturing setup such as laser scanners, inertial sen-

sors or several multi-view, stereo pairs, depth cameras etc.

[14, 18, 32, 42, 36, 17]. The second group consists of meth-

ods which use only a monocular RGB camera or a single

depth sensor [38, 3, 13, 30, 23, 5]. In this case, as the data is

limited and from one perspective only, most of the methods

restrict themselves by defining system specific input con-

straints and priors. The output of this latter group is gen-

erally inferior compared to the former but the cost of the

system, ease of capturing and setup, makes them applicable

for the general public. An important factor in enabling the

success of monocular methods is the availability of statis-

tical human body models and datasets. So we first review

them.
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Human Body Models/Datasets: Several methods used

for human body shape modeling, pose estimation and mo-

tion tracking use learned parametric human body models

for regularization. The data for learning such models is ob-

tained from 3D scans of humans in varying body shapes and

poses, that are captured with a high quality multi-camera

set-up and registered with each other to a common mesh

template. These parametric models can generate new plau-

sible body shapes and poses by interpolating between the

data. The SCAPE model was introduced by Anguelov et al.

[2] and was learned using several registered scans. It re-

quired shape and pose transformation to be applied sepa-

rately on mesh triangles which sometimes lead to inaccu-

racies near joints. BlendSCAPE by Hirshberg et al. [19]

addressed this issue by approximating triangle rotations

as a linear combination of parts’ rotations weighted using

blend weights. Unlike the previous two models, Skinned

Multi Person Linear (SMPL) [26] is a vertex based model

of body shape and pose-dependent shape variations, which

uses joint locations of kinematic chain of body parts. Al-

though other complex models which can capture dynamic

soft-tissue deformations and give textured outputs also ex-

ist (e.g. [29, 12, 5]), we choose to use publicly available

SMPL for our framework as our main goal is not highly ac-

curate shape reconstruction but motion tracking in complex

clothing feasible for a common user. Several datasets asso-

ciated with the models mentioned above exists for learning

and benchmarking. Most of these are static [2, 8, 7, 4] but

recently a few large dynamic datasets have also been intro-

duced with captured motion [29, 6]. Although the recent

datasets like [29, 4, 6] are better at emulating challenges of

the real-world than synthetic datasets like [8, 7], they can

not yet be used to represent the output from an inexpensive

commodity depth sensor like Kinect which has relatively

high noise and low resolution.

Multi-view Systems: Some earlier methods rely on

static contours or silhouettes for estimating the topology

of the shape but they either assume multi-view acquisition

[34, 14] or process binary silhouettes as inputs [24, 16, 31].

Methods like [14, 18, 27, 40, 42, 17] depend on specialized

data acquisition stage and hence inaccessible for a common

user. Tong et al. [33] generate good quality 3D meshes but

use three kinects, and require the person to stand on a ro-

tating turntable while holding the pose. We differ from all

of them as our system requires simple set-up of just one

Kinect.

Monocular Systems - Dense Surface Reconstruction:
Monocular pose estimation, owing to its under-constrained

nature, is generally solved using strong priors and multi-

stage optimization frameworks. A class of such methods

aim specifically at building detailed user model assuming

static or little motion in the input sequence [20, 27]. In

[23], authors present a method for building watertight mod-

els of static scenes using only a single Kinect aimed for

3D printing, which requires the subject to rotate around

while roughly holding the pose. Recent methods are able

to achieve dynamic 3D surface reconstruction, also in real-

time for virtual reality and teleconferencing applications

[44]. These methods typically require the surface topology

to be preserved during motion, such that shape regulariza-

tion can be applied. Newcombe et al. [28] is able to reason

about the canonical shape topology while reconstructing

dense motion. Though their method result in a high fidelity

surface reconstruction of arbitrary shapes, they show results

on slow moving subjects and are not concerned with pose

of the person or connecting them with a human body shape.

4D surface reconstruction of complex real world clothing

with fast motion remains a challenging problem.

Monocular Systems - Shape and Motion Capture: If

we do not require full surface reconstruction, but only hu-

man body shape estimation, certain additional assumptions

can be placed. Weiss et al. [38] use a single Kinect and

SCAPE body model [2] to recover human shape and pose

in different configurations. They show results on minimally

clothed people and do not attempt tracking. In [39] authors

focus on fitting a minimally clothed shape (MCS) under

complex clothing using motion cues. Baak et al. [3] use a

generative-discriminative hybrid framework, in which they

combine inferences from skinned kinematic chain model

and retrieved pose from a curated dataset to decide the final

pose in each frame. Their solution is data driven and limited

by the number of poses in the dataset. Cui et al. [13] build a

full 3D human model using a single Kinect for scanning but

require the user to maintain a specific pose. In [30] authors

focus on virtual avatar creation of a person in any pose us-

ing four static images from a commodity depth sensor but

they do not explicitly model human motion. Efficient hu-

man body shape estimation and tracking is demonstrated by

[43, 41] on MCS subjects.

Bogo et al. [5] is most similar to ours in motivation as

they use dynamic monocular RGB-D Kinect sequences of a

freely moving object to construct a detailed 3D reconstruc-

tion. They do coarse-to-fine processing involving several

optimization stages and introduce a new multi-resolution

body model based on BlendSCAPE [19]. Although their

results have fine details, they do not tackle clothed subjects.

Our method differs from theirs in that we do not use the

color channel, and rely entirely on non-rigid surface match-

ing on point clouds which is regularized by the statistical

human body model. We show good model fitting irrespec-

tive of clothing type, additionally we have shown that track-

ing accuracy can be improved by using a subject specific

consensus mesh along with statistical human body model.
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Figure 3: An example initialization. Top left: Depth image from

Kinect. Top right: Markers placed on SMPL mesh and point cloud.

Bottom left: IK solution. Bottom right: Fine tuned estimate.

3. Subsystem Description
Block diagram of our proposed system is depicted in

Figure 2. Our system is divided into two parts. First part

focuses on developing a tracking framework for subjects

performing challenging actions in everyday clothing. This

framework consists of various subsystems like 3D surface

feature (SIHKS) driven Non-rigid ICP, Inverse Kinematics

and pose refinement based on local energy minimization.

Second framework focuses on generating a subject specific

consensus mesh which is further used to improve tracking.

Before explaining our full pipeline we first explain the ma-

jor subsystems comprising our framework.

3.1. Dataset Acquisition

We used one Kinect V2 sensor for dataset capture, keep-

ing depth and RGB resolution at 512×424 and 1920×1080
respectively. Human segmentation on depth stream was

done using Kinect SDK 2.0. The input to our algorithm

are segmented depth maps, we have used RGB images for

visualization purpose only.

3.2. SMPL Model

As mentioned earlier we use the standard SMPL model

[26] for regularizing shape in each frame. The model

consists of 6890 vertices and its underlying skeleton con-

tains 24 joints. The parameters for this model are 24 × 3
joint angles (θτ , τ ∈ {1, 2, . . . 72}); 10 shape parameters

(η ∈ {1, 2, . . . 10}) and additional 3 translation parameter

of the root (Λ ∈ {1, 2, 3}). We concatenate all the param-

eters to build a 85 dimensional vector Θ. Using these we

can generate SMPL mesh S(Θ) at any pose for a particular

shape.

3.3. Non Rigid ICP

We adapt the registration algorithm by Amberg et al.

[1] for non-rigid alignment in our framework by estimat-

ing landmarks using Scale Invariant Heat Kernel Signatures

(SIHKS [9]). We register meshes by computing the full

mesh transformation matrix X4n∗3 (where n = number of

vertices in input mesh). X is formed by vertically concate-

nating per vertex 4 ∗ 3 transformation matrices and is com-

puted by minimizing the following equation:

E(X) = Ed(X) + αEs(X) + βEl(X) (1)

Here Ed, Es, El stand for the distance, stiffness and

landmark energies respectively, regulated by α, β weight

parameters. Both Ed and El are of the form E(X) =∑
i wi ||Xiui − vi||2, where (ui, vi) represent initial corre-

spondence pair. For Ed, vi is computed using nearest neigh-

bor for all vertices of input mesh. For El, (ui, vi) represents

sparse SIHKS correspondences.

Here wi is the indicator function, which is 0 for invalid

correspondences. We use two constraints to check for the

validity of ui, vi pairs. First constraint is that the angle be-

tween normals at ui and vi should be less than 45◦ and sec-

ond constraint states that ui must be visible to the camera.

We decrease the contribution of the landmark energy term

El by varying β from 1 to 0 as the algorithm proceeds. This

is to capture the increasing confidence of ICP based corre-

spondences compared to SIHKS, over the course of itera-

tions.

Similar to Amberg et al. [1] we define Es based on differ-

ences between transformation matrices assigned to neigh-

boring vertices. To this end we build a node-arc incident

matrix (Dekker [15]) by converting the input mesh into a di-

rected graph and following the same process as in Amberg

et al. [1]. Just like β we gradually decrease the stiffness

factor α from 10 to 0.1 over the course of non-rigid ICP it-

erations. This models motion over various stiffness scales

and hence capture the overall body part movement better.

3.4. Inverse Kinematics

Inverse Kinematics (IK) generates angular updates (Δθ)

of a kinematic chain given the parameterized initial (ei) and

the final position (ef ) of the end-effectors. Mathematically

this can be written in matrix form involving Jacobian, J(θ)
of joint angles [21]:

Δθ = J ′(JJ ′ + λ2I)−1ē

Here ē = ēf − ēi and λ is the damping constant. We use

Pseudo-Inverse Damped Least Squares (PI-DLS [10]) for

solving this as it provides well behaved solutions near sin-

gularities.

It is known that for an IK problem there are multiple so-

lutions possible when the number of end effectors are sparse

e.g. a few sensors attached to the free end of a robotic arm.

In our case there are multiple such ‘end-effectors’ which

are a few set of points attached to every bone of SMPL’s
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skeleton (∼ 7-8 markers per bone). This introduces addi-

tional constraints in an otherwise under constrained system

thereby restricting the search space of incorrect and trivial

solutions. We run this algorithm for 50 iterations, ignoring

a solution whenever upper (θmax
τ ) or lower (θmin

τ ) angular

bounds of a joint (τ ) are breached. These bounds are chosen

for each joint in order to restrict the solutions to naturally

feasible joint angles. e.g. sideways head rotation (along the

vertical Y axis) θmin
τ = −90◦ and θmax

τ = 90◦. Please see

supplementary material for all such joint limits.

3.5. Pose Refinement

This is a crucial and novel part of our proposed frame-

work. It enables us to fine-tune a coarse SMPL estimate by

minimizing a local energy term (E) defined as :

E = αE1 + βE2 + γE3 (2)

The intuition behind the various energy terms is explained

below. E1 penalizes the difference in the visible SMPL

mesh vertices and the target point cloud. Let Vi be ver-

tices of point cloud and Vf be its nearest neighbor in visible

subset of SMPL mesh, then : E1 =
∑

i ||Vf − Vi||2.

Using E1 alone can lead to unnatural human poses. We

resolve this issue by defining E2 using θmin and θmax for

each θ in SMPL model s.t. E2 =
∑

j ||θj − f(θj)||2 where

f(θ) =

⎧⎪⎨
⎪⎩

θmin, θ < θmin

θ, θmin ≤ θ ≤ θmax

θmax, θ > θmax

For temporal smoothing we add E3 which restricts the

current solution θkt
to be in close vicinity to the solution

θkt−1
from the previous frame. E3 =

∑
k

∣∣∣∣θkt
− θkt−1

∣∣∣∣2.

It also helps in penalizing abrupt movements and limits

jerky perturbations in the results. Hence the final energy can

be defined by rewriting Equation 2 as a sum of L2 terms :

E(Θ) = α
∑
i

||Vf − Vi||2 + β
∑
j

||θj − f(θj)||2

+ γ
∑
k

∣∣∣∣θkt
− θkt−1

∣∣∣∣2 (3)

For minimizing E we use quasi newton gradient descent

algorithm (BFGS). During implementation we have used

auto differentiation toolbox [25] for computing gradients.

4. Tracking Framework
Here we discuss step-by-step details for our iterative

coarse-to-fine tracking framework as shown in Figure 2.

Note again that we are only using segmented depth maps

from Kinect as input. Before proceeding further, we define

some common mathematical notations: Subscript t refers to

a time instance in the sequence from 1 to number of frames

in the sequence. Each depth map is denoted by Ft. The

corresponding triangulated mesh is denoted as Mt and the

SMPL mesh as St. The neighbors of a vertex vi in 3D space

are denoted by Nvi which are estimated using approximate

nearest neighbor algorithm.

Depth Map Triangulation (Ft → Mt): Given seg-

mented depth maps, we convert them into triangulated

meshes. For this we iterate row wise over the depth maps.

We connect a pixel to its right and bottom neighbors if the

edge length between them in point cloud space is less then

a certain threshold (< 5cm). This generates a good initial-

ization mesh suitable for our purpose.

Initialization (S0 → S1): For initialization (refer Fig-

ure 3) we manually associate 24 markers on the default

SMPL mesh S0 with the corresponding points on M1. We

apply IK to give us a coarse alignment between S0 and M1

(subsection 3.4). To further refine the initialization we fine-

tune this coarse alignment using Equation 3 which yields

the final MCS denoted by S1. This is the only manual step

in our entire framework and needs to be performed only

once for a sequence. Although there are no strict restric-

tion regarding the starting pose of the subject but we use a

common ‘T’ pose for our experiments. For a random shape

and pose, automatic initialization is a hard problem but can

be solved to a certain extent using techniques mentioned in

Bogo et al. [5]. However such an initialization is not the

focus of our current work.

Mesh alignment (Mt → M′
t): For mesh alignment be-

tween consecutive frames we use non-rigid ICP (subsec-

tion 3.3). We define landmarks as randomly sampled ver-

tices near each joint in Mt. We use SIHKS as mesh features

which are quite robust but cannot differentiate between

symmetric body parts. Furthermore in our case topological

difference between Mt and Mt+1 (which might arise due

to unrestricted motion and loose clothing) also aggravate the

problem. In order to deal with this, we match the landmarks

li ⊂ Mt within a small neighborhood Nli ⊂ Mt+1, which

yields less noisy correspondences. We denote the resultant

aligned mesh as M′
t.

SMPL registration (St → St+1): We register the

SMPL mesh St with the point cloud mesh Mt+1 using a

coarse-fine alignment strategy described below :

1. Coarse pose registration (St → ρt): We apply IK

on St using initial end-effectors from Mt and final

from M′
t using sampling strategy defined in (subsec-

tion 3.4).

2. Fine pose registration (ρt → ρ′t): As the meshes

ρt and Mt+1 are relatively close, we use non-rigid

ICP without landmarks for fine-tuning the alignment

between these two meshes.
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Figure 4: Consensus mesh results. Note how the generated meshes are more faithful to the true geometry compared to the SMPL mesh

(Best viewed in color).

3. Final pose registration (ρ′t → ρ′′t ): The result

from the last step is pose correct but shape deformed.

We perform IK again by choosing initial end effectors

from ρt and final from ρ′t which gives ρ′′t which is a

refined estimate.

4. Shape and pose refinement (ρ′′t → St+1): Finally

we apply pose-refinement Equation 3 for fine-tuning

the alignment of ρ′′t to give the pose and shape cor-

rected St+1.

We perform our automatic mesh alignment and SMPL

registration steps for all pairs of consecutive frames. We

require approximately 3-4 minutes per frame on a 3rd gen-

eration Intel processor with 8 GB memory. As we are not

aiming for a real time scenario, our framework is currently

implemented in Matlab and C++ as a prototype code, which

can be improved significantly for computational efficiency.

5. Consensus mesh generation
Following paragraphs explain the second major contri-

bution of our work, which is creating a subject specific tem-

plate mesh (Cp) from a 360◦ sequence of the person, to

assist tracking.

Retrieving candidate frames: We run tracking frame-

work (section 4) on the sequence to get SMPL model pa-

rameters (Θt). We treat Θf = Θ1 as our front canonical

frame. Rotating the root of Θf by 180◦ we get Θb, which

gives us back canonical frame. We retrieve μf and μb as

the set of closest matching frames based on 3D positions of

skeletal joints of Θf and Θb using nearest neighbor search.

During implementation we have kept |μf | = |μb| = 5.

Pose alignment: In order to align meshes in μf and μb

with their respective canonical frames Θf and Θb we do

pose cancellation w.r.t. frame zero. For this we perform a

reverse transformation for each point cloud mesh Mi ∈ μf

to M0 (which represents the virtual point cloud mesh cor-

responding to rest pose of SMPL model (S0)). We then

repose M0 to Mf using Θf . We perform same operations

on Mi ∈ μb. This gives us pose aligned nearest neighbor

set μf ′ and μb′ .

Approximating front and back surfaces: Using μf ′ and

μb′ as static sequence inputs we execute Kinect fusion to

obtain Pf and Pb as an approximation of front and back

surfaces of the person. This step helps us in removing struc-

tured and real world noise due to Kinect, while simultane-

ously enriching the topology. Pose alignment in the previ-

ous step was necessary to remove noise caused due to move-

ment of the person, which is essential for Kinect fusion. We

substitute hands and feet from SMPL mesh (Sf ) owing to

the low resolution of Kinect depth maps in these regions.

Stitching everything together: In order to merge all es-

timated surfaces, we repose Pb to Pf using Θf and fill in

the missing regions on the left and right profiles by interpo-

lating vertices of SMPL mesh (Sf ). Finally we run Poisson

reconstruction ([22]) in Meshlab ([11]) to generate the final

consensus mesh (Cp) Figure 4.

Repositioning of Consensus Mesh: In order to repose

the Consensus mesh in each frame according to the track-

ing, we use a set of highly aligned (as per a certain thresh-

old) vertices between the SMPL and Consensus meshes and

perform ARAP. This animates the movements using the

Consensus mesh and reduces the tracking error due to better

adherence to the true geometry.

Discussion about Consensus Mesh: As explained above,

the CMesh (Cp) is a clothed 3D mesh of a person, with a

corresponding parametric SMPL model. Cp adheres better
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Figure 5: Qualitative results of our framework on our dataset. Each figure shows the input point cloud (color coded), pose refined SMPL

mesh and reposed CMesh. In inset figure we also show corresponding RGB image. Please refer to the supplementary video to notice the

various challenging poses, actions, hairstyles and clothing worn by the subjects (Best viewed in color).

to the topology of the loosely-clothed person and the un-

derlying SMPL allows it to be animated in plausible ways

as shown before. The combination of CMesh and SMPL

can be used for better human tracking, learning body shapes

and cloth segmentation. The pair can also be used for pose-

related cloth-deformations to retarget body shapes or virtual

avatars, captured in more realistic settings.

6. Results and Discussion

For the purpose of evaluating the performance of our al-

gorithm we captured several RGB-D sequences. Our sub-

jects included 4 males and 4 females. Subjects wore chal-

lenging everyday clothes like Hoodie, Jeans, T-shirt, Loose

top , different hairstyles etc. We recorded 11 sequences

per subject (7 common and 4 different actions). Recorded

actions included simple exercises, athletic action, Yoga

poses etc. To emulate real world setting all sequences were

recorded without any special background or body markers.

Please refer supplementary for a detailed description of col-

lected dataset. We will be releasing our implementation and

the entire dataset to help research in this area.

Qualitative Results: We show qualitative performance of

our system in Figure 5. We show color coded point cloud

(blue = near, red = far), corresponding tracked SMPL mesh

and reposed consensus mesh for a few key-frames for some

of the captured sequences. Even with a very minimal input,

our system is able to tackle challenging cases. Note how our

results show correct tracked shape and pose for the follow-

ing cases : (i) complex and fast motion (2c subject turning

around, 3c kicking) (ii) challenging hairstyles (1b long tied

hair, 3a pony tail) (iii) loose clothing and complex poses

(1c, 2c and 3b Hoodie, 1b and 2b loose top . . .) (iv) signif-

icant self-occlusion (2c, 3a). This highlights the robustness

and generality of our framework.

Quantitative Results: Contemporary methods that are

based on monocular input do not tackle ‘temporal track-

ing’ with ‘statistical body model’ fitting specifically for sub-

jects in ‘casual clothes’. Lack of implementation resources

(codes, complete datasets etc.) make comparisons hard to

do. Hence to show objective effectiveness of our system we

ran our algorithm on the dataset by De Aguiar et al. [14] and

Vlasic et al. [35]. We use their results as our ground truth.

To test our system we generate synthetic depth maps from a

singular point of view using OpenGL. We additionally cre-

ated a virtual 360◦ sequence of the person by rotating few

ground truth meshes. We created consensus mesh using this

sequence.

For quantifying the error of our SMPL tracking w.r.t.

ground truth meshes (Gt) we compute mean absolute drift

error εt, as follows: We find correspondences between ver-

tices a ∈ S1 and b ∈ G1 by nearest neighbor search to get

an ordered set (a, b) ∈ C. Consider a time step Ft → Ft+1.

during which (at, bt) → (at+1, bt+1). For this transition we

define εt as : εt = d(at+1, bt+1) − d(at, bt). Here d(x, y)
is the euclidean distance. εt measures error w.r.t. motion
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Figure 6: Quantitative results on De Aguiar et al. [14] and Vlasic et al. [35]. Top row shows graphs for mean drift error (εt) for various

frames in the sequence (S31 [14] and I squat [35]). The color coded CMesh and SMPL mesh represents average (εt) per vertex over all

frames. Bottom row shows percentile based Hausdorff distance (dl) per frame (for various l = 95% (red)), 75% (blue), 50% (magenta)).

In the graph S stands for SMPL (dotted line) and C stands for Cmesh (solid lines) based errors. Color coded ground truth mesh based on

nearest neighbor found w.r.t SMPL and Cmesh is also shown. (Best viewed in colors on screen)

over time but does not tell us anything about how close the

geometry of our solution is to the ground truth mesh.

Hausdorff distance dH is one way to measure

the same but since it gives worst possible dis-

tance, it is sensitive to outliers. Hence we com-

pute percentile based Hausdorff distance dl(P,Q) =

max
{

l%
maxj mini

∣∣∣∣ypi − yqj
∣∣∣∣ , l%

maxi minj
∣∣∣∣ypi − yqj

∣∣∣∣},

e.g. when l = 50% we are taking max over medians.

We computed the same error metrices for CMesh w.r.t.

ground truth Figure 6. Notice how errors for CMesh are

low as compared to SMPL even for l = 95%. Notice

the significant percentage error reduction of repositioned

CMesh w.r.t. SMPL tracking computed on average of εt
and dl for all frames (ε,t and d,l) in Table 1.

Sequence ε,t d,95 d,75 d,50
S08 2.40% 5.25% 10.58% 19.55%
S31 16.67% 14.96% 4.56% 17.06%

I crane 15.45% 9.21% 12.50% 23.78%
I jumping 12.88% 5.33% 8.04% 14.18%
I march 16.08% 5.51% 10.25% 20.44%
I squat 3.07% 12.97% 9.13% 17.97%

Table 1: Percentage error reduction of repositioned CMesh w.r.t.

SMPL tracking computed over (ε,t and d,l). Top two sequences are

from [14] and bottom four from [35]

Limitations : As we do not explicitly restrict the range

of possible human poses, our system sometimes generate

unnatural poses. Although our system is capable of han-

dling fairly fast actions, it faces issues in highly challenging

cases e.g. when fast actions are in conjunction with promi-

nent self-occlusion or profile view. We have also observed

that such cases can be corrected if the rate of capturing is

fast. We are able to handle large range of casual clothing

styles Figure 5 but our method can face issues in extremely

challenging cases (e.g. Wedding dresses, Saree, Kimono,

etc.), which might require explicit cloth modeling.

7. Conclusions
In this paper, we demonstrated a method for full 3D hu-

man body shape and motion capture for subjects wearing

everyday clothes. Our method has the simple capture set-up

of just one depth camera. We show effective articulated mo-

tion tracking, by iterating between computation of surface

features and performing inverse kinematics regularized by a

statistical human body model. Despite the simplicity of the

method, our evaluation shows that it can track challenging

poses. We also proposed a method for creating Consen-
sus mesh of a person which can assist in tracking. In our

current work we have shown that animating such a CMesh
using tracked SMPL models improves tracking accuracy. In

future we would like to use CMesh in our tracking pipeline

itself to improve tracking further.
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Markus H. Gross. Shape from selfies: Human body shape

estimation using cca regression forests. In ECCV, 2016. 3

[17] Mingsong Dou, Sameh Khamis, Yury Degtyarev, Philip

Davidson, Sean Ryan Fanello, Adarsh Kowdle, Sergio Orts

Escolano, Christoph Rhemann, David Kim, Jonathan Taylor,

Pushmeet Kohli, Vladimir Tankovich, and Shahram Izadi.

Fusion4d: Real-time performance capture of challenging

scenes. ACM Trans. Graph., 35(4):114:1–114:13, July 2016.

2, 3

[18] Juergen Gall, Carsten Stoll, Edilson De Aguiar, Christian

Theobalt, Bodo Rosenhahn, and Hans peter Seidel. Motion

capture using joint skeleton tracking and surface estimation.

In CVPR, 2009. 2, 3

[19] David A. Hirshberg, Matthew Loper, Eric Rachlin, and

Michael J. Black. Coregistration: Simultaneous Alignment
and Modeling of Articulated 3D Shape, pages 242–255.

Springer Berlin Heidelberg, 2012. 3

[20] Shahram Izadi, David Kim, Otmar Hilliges, David

Molyneaux, Richard Newcombe, Pushmeet Kohli, Jamie

Shotton, Steve Hodges, Dustin Freeman, Andrew Davison,

and Andrew Fitzgibbon. Kinectfusion: Real-time 3d recon-

struction and interaction using a moving depth camera. In

Proceedings of the 24th Annual ACM Symposium on User
Interface Software and Technology, UIST ’11, pages 559–

568, New York, NY, USA, 2011. ACM. 3

[21] Shuuji Kajita, Hirohisa Hirukawa, Kensuke Harada, and

Kazuhito Yokoi. Introduction to humanoid robotics, volume

101. Springer, 2014. 4

[22] Michael Kazhdan and Hugues Hoppe. Screened poisson sur-

face reconstruction. ACM Transactions on Graphics (TOG),
32(3):29, 2013. 6

[23] Hao Li, Etienne Vouga, Anton Gudym, Linjie Luo,

Jonathan T. Barron, and Gleb Gusev. 3d self-portraits. ACM
Trans. Graph., 32(6):187:1–187:9, November 2013. ISSN

0730-0301. 2, 3

[24] Y. Liu, C. Stoll, J. Gall, H. P. Seidel, and C. Theobalt. Mark-

erless motion capture of interacting characters using multi-

view image segmentation. In CVPR, pages 1249–1256, June

2011. 3

398



[25] M. Loper. Chumpy library. https://pypi.python.
org/pypi/chumpy, 2017. 5

[26] Matthew Loper, Naureen Mahmood, Javier Romero, Ger-

ard Pons-Moll, and Michael J. Black. SMPL: A skinned

multi-person linear model. ACM Trans. Graphics (Proc.
SIGGRAPH Asia), 34(6):248:1–248:16, October 2015. 1,

2, 3, 4

[27] Alexandros Neophytou and Adrian Hilton. A layered model

of human body and garment deformation. In Proceedings of
the 2014 2Nd International Conference on 3D Vision - Vol-
ume 01, 3DV ’14, pages 171–178, Washington, DC, USA,

2014. IEEE Computer Society. 3

[28] R. A. Newcombe, D. Fox, and S. M. Seitz. Dynamicfusion:

Reconstruction and tracking of non-rigid scenes in real-time.

In CVPR, pages 343–352, June 2015. 3

[29] Gerard Pons-Moll, Javier Romero, Naureen Mahmood, and

Michael J. Black. Dyna: A model of dynamic human shape

in motion. ACM Transactions on Graphics, (Proc. SIG-
GRAPH), 34(4):120:1–120:14, August 2015. 3

[30] Ari Shapiro, Andrew Feng, Ruizhe Wang, Hao Li, Mark Bo-

las, Gerard Medioni, and Evan Suma. Rapid avatar capture

and simulation using commodity depth sensors. Comput.
Animat. Virtual Worlds, 25(3-4):201–211, May 2014. ISSN

1546-4261. 2, 3

[31] Dan Song, Ruofeng Tong, Jian Chang, Xiaosong Yang, Min

Tang, and Jian Jun Zhang. 3d body shapes estimation from

dressed-human silhouettes. In Proceedings of the 24th Pa-
cific Conference on Computer Graphics and Applications,

PG ’16, pages 147–156, 2016. 3

[32] C. Stoll, N. Hasler, J. Gall, H. P. Seidel, and C. Theobalt.

Fast articulated motion tracking using a sums of gaussians

body model. In ICCV, pages 951–958, Nov 2011. 2

[33] Jing Tong, Jin Zhou, Ligang Liu, Zhigeng Pan, and Hao Yan.

Scanning 3d full human bodies using kinects. IEEE trans-
actions on visualization and computer graphics, 18(4):643–

650, 2012. 3

[34] Kiran Varanasi, Andrei Zaharescu, Edmond Boyer, and Radu

Horaud. Temporal Surface Tracking Using Mesh Evolution,

pages 30–43. Springer Berlin Heidelberg, Berlin, Heidel-

berg, 2008. 3

[35] Daniel Vlasic, Ilya Baran, Wojciech Matusik, and Jovan
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