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Fig. 1. Shaderball visualizations of four selected materials produced by our network are shown at the bottom, for two lighting conditions : Left - Daylight and
Right - Sunset. Scene adopted from ©eMirage (https://www.emirage.org/)

Photo realism in computer generated imagery is crucially dependent on how
well an artist is able to recreate real-world materials in the scene. The work-
flow for material modeling and editing typically involves manual tweaking
of material parameters and uses a standard path tracing engine for visual
feedback. A lot of time may be spent in iterative selection and rendering
of materials at an appropriate quality. In this work, we propose a convolu-
tional neural network based workflow which quickly generates high-quality
ray traced material visualizations on a shaderball. Our novel architecture
allows for control over environment lighting and assists material selection
along with the ability to render spatially-varying materials. Additionally,
our network enables control over environment lighting which gives an artist
more freedom and provides better visualization of the rendered material.
Comparison with state-of-the-art denoising and neural rendering techniques
suggests that our neural renderer performs faster and better. We provide
a interactive visualization tool and release our training dataset to foster
further research in this area.
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1 INTRODUCTION
Ray tracing has emerged as the industry standard for creating photo
realistic images and visual effects [Keller et al. 2015]. Accurate mod-
eling of the behavior and traversal of light, along with physically ac-
curate material modeling, creates the beautiful computer generated
imagery we see today. Achieving photo realism in such renderings is
however a tedious process. Ray tracing is a computationally expen-
sive operation while physically accurate material modeling requires
expertise in fine-tuning of parameters to achieve the desired look.
Visualization of edits during fine-tuning is very time consuming
if the target image is ray-traced. An artist might thereby end up
spending a lot of time in a slow and iterative visualization loop.

In this paper, we present a neural network architecture that can
quickly output a high-quality ray-traced visualization of a material.
Our work extends the state-of-the-art in material rendering by pro-
viding the ability to deal with a large range of uniform as well as
spatially-varying materials, along with control over the environ-
ment lighting. We render on a fixed shaderball geometry which is
complex enough to encode fine interactions between light and the
underlying material.

We evaluate our method quantitatively and also compare qualita-
tive render quality with existing neural rendering frameworks. We
also conduct a user study to show the benefit of providing control
over lighting for material selection. We show that our proposed sys-
tem is fast and therefore helps in real-time visualization of materials.
Our method also compares favourably with denoising frameworks
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in producing faster and better rendered images. In summary, the
following are the contributions of our work:

• A neural renderer to aid in visualization of uniform and
spatially-varying materials.

• An architectural enhancement to provide control over the
environment lighting, thereby increasing visualization capa-
bility and freedom.

• An interactive tool for material visualization and editing and
a large-scale dataset of uniform and spatially-varying mate-
rial parameters with corresponding ground truth ray-traced
images (Project Page1)

Figure 1 is an example of the utility of our proposed system. Each
material visualization is created within 3 milliseconds and accurately
mimics the behaviour of being rendered in a scene environment.

2 RELATED WORK
The use of neural networks for rendering has gained popularity
in the recent past. Existing approaches to neural rendering deal
with denoising low sample-count Monte-Carlo renders or neural
rendering of materials on a fixed geometry. We briefly discuss recent
works dealing with denoising, material modelling and acquisition
and image-based relighting, in the context of our contributions.
Material modelling: Several material models have been pro-

posed in the past [Guarnera et al. 2016]. While some models focus
on physical accuracy others focus on intuitiveness and simplicity. An
intuitive but not strictly physically-accurate material model was pro-
posed by Burley [2012]. The model, known as the principled shader
model, is parameterized by 13 different values, that control a specific
physical aspect of the material. The Cook-Torrance model [Cook
and Torrance 1982] is another popular material model that is param-
eterized by four values - Diffuse Color, Specular Color, Roughness and
Normal. Material model parameters can also be spatially-varying
i.e. they can consist of different values at different locations of a 3D
surface. In this case, each value is assigned from a UV-mapping of
the 3D object to a 2D per-pixel parameter map. In our work, we use
the Cook-Torrance material model (Section 3).
Material acquisition: Material recovery from a set of images

or a single-image is an interesting problem and has been recently
studied using neural networks. A method for accurate capture of
BRDF (Bi-directional Reflectance Distribution Function) using a
light-stage setup and a deep neural network was proposed by Kang
et al. [2018]. Their approach captures multiple images for accurate
reconstruction, where the weights of their network control the illu-
mination within the lightstage. A neural network architecture for
recovering the SVBRDF (Spatially Varying BRDF) from a single flash
photograph of a planar material was proposed by Deschaintre et al.
[2018]. An even more challenging task of recovering the SVBRDF
and shape of a free-form object from a single flash photograph is
demonstrated by Li et al. [2018]. While these approaches have signif-
icantly improved the speed and accuracy of acquiring materials, the
visualization of acquired materials still requires ray-tracing. With
advancements in the acquisition process, similar advancements in
visualization are imperative, so as to make the whole pipeline func-
tion faster. This is the main focus of our work.
1https://aakashkt.github.io/neural-renderer-material-visualization.html

Rendering as Denoising: Much attention has been paid in re-
cent days towards denoising Monte-Carlo (MC) renders in order
to enable real-time ray-tracing. A recurrent autoencoder for the
task of denoising MC renders was proposed by Chaitanya et al.
[2017] . A more recent method [Lehtinen et al. 2018] showcases
a general denoising framework, trained on noisy input and noisy
ground-truth pairs. Both of these approaches make use of auxiliary
buffers as additional input to their networks. Other approaches like
[Kuznetsov et al. 2018] aim to efficiently distribute MC samples to
bring down the overall render time. All these approaches require
a low sample count (spp) MC render as input. One could argue
that such methods can be used for quick material visualization, by
rendering the a given material with a low sample count, and then
denoising the image. We show that a neural renderer specifically de-
signed for material visualization produces faster and better quality
results than the corresponding denoising approach.

Image-based relighting: Neural networks have also been used
for relighting an image [Ren et al. 2015]. A network that can relight
a scene from five differently lit images of the scene was proposed by
Xu et al. [2018]. Yet another neural network for relighting human
faces from a single input photograph was proposed by Sun et al.
[2019]. While not directly related to our work, we take inspiration
from such architectures to provide a control over the light direction
in the rendered material output.

Neural rendering: Closely related to our work, neural rendering
for material visualization has been proposed by Zsolnai-Fehér et al.
[2018]. Their approach transforms a low dimensional parameter
space to a high dimensional image output, which is the rendered
material on a fixed shaderball, under fixed lighting conditions. How-
ever, their neural renderer has a large number of parameters, which
affects run-time and portability. Also, the target material is ren-
dered under a fixed light position thereby reducing the flexibility
of visualization. Additionally, their work only deals with constant
material parameters while it is quite common and in fact necessary
to have spatially-varying parameters to increase photo realism in
materials. Our neural renderer addresses all of these issues, in that
it is much smaller and hence faster, allows for control over the light
direction and enables the use spatially-varying parameters. We also
demonstrate quantitative improvements in rendering quality on
comparing our performance with [Zsolnai-Fehér et al. 2018].
Ours is a flexible neural renderer for material visualization and

can be used in conjunction with material suggestion systems similar
to those shown in [Zsolnai-Fehér et al. 2018], for building high-
quality assistive tools for artists.

3 METHOD
We seek to quickly and accurately render constant or spatially vary-
ing material parameters on fixed geometry under controllable envi-
ronment lighting. The incoming radiance at each pixel x of a such a
rendered 2D image can be modeled as:

I (x) =
∫
Ω
fr (px ,ωi ,ωx )L(px ,ωi )(ωi · n)dωi , (1)

where px is the 3D point corresponding to the 2D pixel x, ωi is the
incoming light direction, ωx is the direction towards pixel x from
point px , L(px ,ωi ) is the radiance of incoming light at point px from

https://aakashkt.github.io/neural-renderer-material-visualization.html
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Fig. 2. An overview of our proposed workflow. From input SVBRDF maps (a), we create screen-space maps (b) by UV-mapping each map on the shaderball,
and rasterizing the scene with that map as base texture. We provide the sun direction and turbidity [ωs , c] as an input along with the concatenation of
screen-space maps. (c) shows the architecture of our proposed neural renderer. (d) shows the results of our network under different environment lighting.

direction ωi , Ω is the set of directions on the upper hemisphere and
fr is the Bi-directional Reflectance Distribution Function (BRDF).
The choice of fr determines the material model in use. The hyper-
parameters of fr describe the surface and material properties of
the shaderball, which we refer to as the material parameters. We
refer the reader to [McAuley et al. 2012] for a complete overview of
such physically based shading models and [Hoffman 2012] for the
mathematical details.
We use the Cook-Torrance [Cook and Torrance 1982] material

model (fr ) for rendering. Our choice of this material model was
based on two aspects: (1) The Cook-Torrance model is based on the
microfacet theory, which accurately models surface properties; (2)
A large SVBRDF dataset for the Cook-Torrance model is publicly
available [Deschaintre et al. 2018].

We parameterize the environment lighting in the scene using the
sky model proposed by Hosek and Wilkie [2012]. Such a sky model
simulates realistic and plausible environment lighting given only
the sun direction ωs and turbidity (cloudiness) c as input. Hence,
we can simulate large variations in the outdoor lighting with only
four parameters.

We formally define the task of neural rendering as follows. Given
the Cook-Torrance material parametersmf along with the incom-
ing sun direction ωs and turbidity c , the solution of the rendering
equation is estimated by a convolutional neural network ϕ as:

I (x) = ϕ(x ,mf ,ωs , c). (2)

We do not explicitly parameterize the geometry of our target scene
since it remains constant across all renders.

3.1 Network architecture
Figure 2 shows the overview of our proposed workflow. From input
SVBRDF maps, we first construct their corresponding screen-space
maps, by UV mapping each input map to the shaderball, and raster-
izing the scene with that map as the base texture (Figure 2(b)). The
concatenation of these screen-space maps, along with the sun direc-
tion ωs and turbidity c forms the input to our network. Figure 2(d)

shows the rendered material output under different environment
lighting conditions.
Our network architecture is inspired from the U-net-style au-

toencoder architecture [Ronneberger et al. 2015]. The encoder takes
the concatenation of 400x400 screen space maps of the material
parameters: Diffuse, Specular, Roughness and Normal, and passes
it through a series of convolutional layers, with stride 2 for down-
sampling. Each layer is followed by Batch Normalization and ReLU
activation. We encode the 3D vector for the directional light using a
separate, fully-connected encoder. Each fully-connected layer of this
encoder is followed by Tanh activation. The encoder expands the
3-dimensional vector to a 625-dimensional vector. We then reshape
this 625 dimensional vector to a 25x25 dimensional feature map,
and replicate it 128-times along the channel dimension, to get a
128x25x25 feature map. We append this feature map to the bottle-
neck layer of the Ray-Trace network. The decoder then deconvolves
the concatenated feature map and encoder output. Each decoder
layer is followed by Batch Normalization and ReLU activation. We
use skip connections to recover the high frequency details in the
rendering and improve convergence. The last layer of the decoder
uses Sigmoid activation and converts the 64 channel feature map to
an output 3 channel target RGB image.

3.2 Generating training data
We generate a synthetic dataset of 50,000 material parameter maps
and ground truth render pairs, containing equal number of spatially-
varying and uniform parameter maps. We randomly choose 1000
images from the above dataset for the test set, and train our network
on the remaining 49,000 images. For uniform maps, we randomly
choose one value for all the four parameters (Diffuse, Specular,
Roughness, Normal), and replicate it along the width and height
(400x400) to get a uniform parameter map. We use SVBRDF textures
from the dataset of Deschaintre et al. [2018] for spatially-varying
maps. For each material parameter map, we sample 5 random sun
directions on the upper hemisphere with random turbidity value,
and render the scene at 150 samples-per-pixel (spp). We use the
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Fig. 3. Average case and ablation study comparisons with [Zsolnai-Fehér et al. 2018] and [Chaitanya et al. 2017]. [Zsolnai-Fehér et al. 2018] has no results for
spatially-varying materials, since they only handle uniform materials. Results are shown on a fixed sun direction.

cycles ray-tracing engine in Blender 3D [Blender Online Community
2018], in which we create the Cook-Torrance material for use on
the shaderball. This dataset is available at 2.

3.3 Training details
The task of material visualization requires that the perceptual visual
quality of the rendered images is impeccable. Cost functions based
on Euclidean (L2) distance are known to be prone to blurring and
pixel degradation. We therefore use a loss term which evaluates
the perceptual quality of the rendered image, along with L1 loss for
training, inspired from [Johnson et al. 2016].
Specifically, we use the feature reconstruction loss from a pre-

trained VGG16 [Simonyan and Zisserman 2015] network, which is
given by :

L j
f eat (y

′,y) = 1
CjHjWj



ϕ j (y′) − ϕ j (y)


2
2 , (3)

where ϕ j is the activation of the jth convolutional layer with di-
mensions Cj × Hj ×Wj representing number of channels, width
and height of the feature map, respectively. Here, y denotes the
predicted output and y′ is the ground truth. We use the relu_3_3
(j=relu_3_3) feature representation in our experiments. Thus, our
final composite loss is given by:

Ltrain = L1 + Lr elu_3_3
f eat . (4)

2https://aakashkt.github.io/neural-renderer-material-visualization.html

Algorithm

Zsolnai-Fehér et al.

Params: 5,374,75,643

Chaitanya et al.

Params: 15,05,453

Ours

Params: 117,52,404

PSNR(dB) Pre-proc. Network Total

-36.105

30.437

37.656

70.000 2.510 72.510

2.7172.7150.002

13.866 13.866

SSIM

0.965

0.992

0.985

Table 1: Quantitative and run-time comparisons (in milliseconds). The net-
work of [Chaitanya et al. 2017] has a pre-process time for rendering the
2spp image, our network has a pre-process time for UV-mapping. Run-time
values are evaluated on a workstation with 40 CPU cores and one NVIDIA
GTX 1080Ti GPU.

We train our network on an NVIDIA GTX 1080Ti, with a batch
size of six using the Adam Optimizer (lr = 10−2, β1 = 0.9, β2 = 0.999).
We initialize all weights using Glorot-initialization. The network
is trained for 30 epochs and takes around 90 hours to train on our
setup.

4 RESULTS AND EVALUATION
We compare our performance with two contemporary paradigms
for neural rendering: (1) Neural rendering based on denoising [Chai-
tanya et al. 2017]; (2) Direct neural rendering [Zsolnai-Fehér et al.
2018]. We also justify our network design choices with an ablation

https://aakashkt.github.io/neural-renderer-material-visualization.html
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Fig. 4. Comparisons with [Zsolnai-Fehér et al. 2018], [Chaitanya et al. 2017] and ablations of our network. Results are shown for both uniform material
parameter maps and spatially-varying material parameter maps. [Zsolnai-Fehér et al. 2018] has blank spots for spatially-varying materials, since they only
handle uniform materials. Results are shown on a fixed sun direction.

study and conduct a user study for perceptual evaluation. Figures 4,
8, 9 and 10 show extensive results and comparisons.

4.1 Comparison with denoising
We show qualitative and run-time comparisons with the denoiser
proposed by Chaitanya et al. [2017]. We implement their network in
PyTorch and train on our dataset with 2spp render input and 150spp
ground truth, consisting of both uniform and spatially-varying ma-
terials. The denoiser fails to recover accurate details, which are
essential for material visualization (Fig 3). In terms of run-time, it is

evident that first rendering a 2spp image and denoising it requires
a lot more time than what is required by our network, even with
the additional overhead of UV-mapping (Table 1).

4.2 Comparison with direct neural rendering
We also compare our results with the neural renderer proposed by
Zsolnai-Fehér et al. [2018]. We implement their network in PyTorch
and train on our dataset of uniform material parameter maps. For a
fair comparison, we compare results on a fixed sun direction. Our
network produces better results than their network both in terms
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of render quality and PSNR values (Fig. 3, 4 and Table 1). Since the
number of parameters of our network differs from theirs by a factor
of 10, the run-time of our network is also better.

4.3 Ablation study
We justify the impact of our composite loss function by training a
standalone network using only the L1 loss. Figure 3, 4 demonstrates
that L1 loss alone is unable to capture fine details, especially of the
normal map. We also justify the benefit of using skip connections
in our network. Figure 3, 4 shows this comparison. Without skip
connections, several high-frequency details are lost (Fig. 3, last two
rows).

4.4 Quantitative evaluation
Table 1 and Fig. 3 show that quantitative metrics like PSNR and SSIM
do not faithfully reflect the visual quality of results. Although the
average PSNR value of Zsolnai-Fehér et al. [2018] are comparable to
ours, their result contains artifacts in near perfectly dark or white
regions. Another point to note is the resultant PSNR values produced
by the denoiser and by our network. The quantitative values are
very close, even though the latter’s visual quality is superior (Fig. 3,
last row).

4.5 Qualitative user study
We conduct an extensive user study consisting of 70 users to qualita-
tively validate the impact of flexible lighting for the task of material
selection. From a rendered scene, we pick one dominant material
from the scene and render four materials on the shaderball, with
one of them being the correct material and others encoding slight
variations. We ask the users to pick the correct materials in two in-
dependent experiments conducted with and without the freedom to
view the shaderball under flexible lighting. Two example instances
of the user study are shown in Figure 5. We find that only 17.9% of
users are able to identify the correct material under fixed lighting
conditions. This number increases to 49.3% once the flexible lighting
is made available. This clearly demonstrates the benefit of using
flexible lighting in our renderings for material visualization.

5 CONCLUSION
In summary, we present a convolutional neural network for accurate
rendering and visualization of both uniform and spatially-varying
materials. We enable control over the environment lighting through
our architecture, and verify its benefit through a qualitative user
study. Comparison with denoising and neural rendering methods
shows improved quantitative and qualitative results. We also re-
lease a large-scale dataset of uniform and spatially-varying material
parameter-render pairs. In the future, we are interested in general-
izing the network to arbitrary geometry.

ACKNOWLEDGMENTS
We thank the reviewers of our SIGGRAPH Asia 2019 submission for
their valuable comments and suggestions.

Fig. 5. Two example questions and options presented to the users in our
user study. The user was asked to identify the material in the scene. The
second row of options are where lighting control was allowed. On viewing
under certain lighting, the distinction between materials becomes clear. The
correct option is highlighted in green.
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Fig. 6. (a) Network to render a uniform materials on the shaderball. (b) Network to render spatially-varying materials on the shaderball. Each network was
trained separately on uniform material dataset and spatially-varying material dataset, respectively.

Fig. 7. (a) Results of the network described in Figure 6(a) (Uniform materials) and (b) Results of the network described in Figure 6(b) (Spatially-varying
materials), for different locations of the planar light source.

A PRELIMINARY EXPERIMENTS
In this section, we describe various other experiments we conducted
for material visualization. To improve the neural renderer proposed
by Zsolnai-Fehér et al. [2018] while also enabling flexible lighting,
we used the network architectures shown in Figure 6.

Figure 6(a) shows a network architecture which is an extension of
Zsolnai-Fehér et al. [2018], which provided control over an area light
source in the scene. We trained this network on a dataset of uniform
materials using perceptual loss along with the L1 loss, as described
in this paper. Figure 7(a) shows some results from this network.
We achieved better quantitative and qualitative results, on compari-
son with [Zsolnai-Fehér et al. 2018], which further motivated the
extension to handle spatially-varying materials.
Consequently, we used the network shown in 6(b) to handle

spatially-varying materials. We provided a UV mapped material
map as input to the network (Sect. 3.1), since spatially-varying
materials can not be defined using singular values. We therefore
used only convolutional layers (highlighted in blue), in place of
fully connected + convolutional layers of Figure 6(a). We trained
this network on a dataset of spatially-varying materials, using the
training loss described in this paper. Results of this network are
shown in Figure 7(b).

Both of the networks described above provided control over light-
ing through an area light source, whose location was restricted to a
single ring on the upper hemisphere. Moreover, uniform materials
are a special case of spatially-varying materials, which makes the
two networks redundant. We thus propose a single network for
handling both uniform and spatially-varying materials in this paper
(Sect. 3.1). We also extend our network to handle a full sky model
[Hosek and Wilkie 2012], with sun locations defined at any point
on the upper hemisphere. This was motivated by the great fidelity
of both the preceding networks to handle arbitrary light locations
on the ring of the upper hemisphere, although trained on randomly
sampled light locations.
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Fig. 9. Visualization results for different sun directions and turbidity values of a specular uniform material.
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Fig. 10. Visualization results for different sun directions and turbidity values of a specular uniform material.
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