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Figure 1. We present ISRF, an interactive method to segment objects in radiance fields. Users can draw positive strokes to segment
multiple objects at a time in 3D and negative strokes to remove unwanted regions repeatedly. In the figure, the WOODEN TABLE TOP is
segmented using one positive and one negative stroke as shown.

Abstract

Radiance Fields (RF) are popular to represent casually-
captured scenes for new view synthesis and several ap-
plications beyond it. Mixed reality on personal spaces
needs understanding and manipulating scenes represented
as RFs, with semantic segmentation of objects as an im-
portant step. Prior segmentation efforts show promise but
don’t scale to complex objects with diverse appearance.
We present the ISRF method to interactively segment ob-
jects with fine structure and appearance. Nearest neighbor
feature matching using distilled semantic features identifies
high-confidence seed regions. Bilateral search in a joint
spatio-semantic space grows the region to recover accu-
rate segmentation. We show state-of-the-art results of seg-
menting objects from RFs and compositing them to another
scene, changing appearance, etc., and an interactive seg-
mentation tool that others can use.

1. Introduction
Scene representation is a crucial step for any scene un-

derstanding or manipulation task. Relevant scene parame-
ters, be it shape, appearance, or illumination, can be rep-
resented using various modalities like 2D (depth/texture)
maps, point clouds, surface meshes, voxels, parametric
functions, etc. Each modality has its strengths and weak-
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nesses. For example, shape correspondence is straightfor-
ward between point clouds compared to surface meshes but
compromises rendering fidelity. Thus, choosing an appro-
priate representation has a major impact on downstream
analyses and applications.

Neural implicit representations have emerged as a
promising modality for 3D analysis recently. Although ini-
tially proposed only for shapes [28, 34], they have been
extended to encode complete directional radiance at a
point [30], other rendering parameters like lightfields, spec-
ularity, textual context, object semantics, etc. [1, 9, 11,
12, 16, 19, 51]. The representation was extended beyond
static inward-looking and front-facing scenes to complex
outward-looking unbounded 360◦ views, dynamic clips, oc-
cluded egocentric videos, and unconstrained images.

Radiance fields have also been used beyond Novel View
Synthesis (NVS) for other applications [5,26,35,44,47,49,
53, 56, 59]. Segmenting objects of the scene representation
is a first step towards its understanding and manipulation
for different downstream tasks. There have been a few ef-
forts at segmenting and editing of radiance fields. Recently,
N3F [48], and DFF [21] presented preliminary solutions to
this in the neural space of radiance fields. Both use dis-
tillation for feature matching between user-provided cues
with the learned 3D feature volume, with N3F using user-
provided patches and DFF using textual prompts or patches
as the segmentation cues. These methods struggle to seg-
ment objects with a wide appearance variation. The NVOS
system provides segmentation with strokes but have poor
quality and non-interactive computations [38].
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Figure 2. ISRF System overview: We capture a 3D scene of voxelized radiance field and distill the semantic feature into it. Once captured,
the user can easily mark regions using a brush tool on a reference view (green[ ] stroke). The features are collected corresponding to the
marked pixels and clustered using K-Means. The voxel-grid is then matched using NNFM (nearest neighbor feature matching) to obtain a
high confidence seed using a tight threshold. The seed is then grown using bilateral search to smoothly cover the boundaries of the object,
conditioning the growth in the spatio-semantic domain.

In this paper, we present a simple and efficient method
to interactively segment objects in a radiance field represen-
tation. Our ISRF method uses an intuitive process with the
user providing easy strokes to guide it interactively. We use
the fast and memory-efficient TensoRF representation [7]
to train and render. TensoRF uses an explicit voxel repre-
sentation that is more amenable to manipulation. We in-
clude a DINO feature [6] at every voxel to facilitate seman-
tic matching from 2D to 3D. DINO features are trained on a
large collection of images and are known to capture seman-
tics effectively. We condense the DINO features from the
user-specified regions to create a fixed-length set using K-
Means. A nearest neighbor feature matching (NNFM) on
this set in the 3D voxels identifies a high-confidence seed
region of the object to be segmented. The seed region is
grown using a bilateral filtering-inspired search to include
neighboring proximate voxels in a joint feature-geometric
space. We show results of segmenting several challenging
objects in forward facing [29] and 360 degrees [2] scenes.
The explicit voxel space we use facilitates simple modifi-
cation for segmenting objects. We also show examples of
compositing objects from one RF into another. In summary,
the following are the core contributions of ISRF:

◦ An easily interpretable and qualitatively improved 3D
object segmentation framework for radiance fields.

◦ Interactive modification of segmentation to capture
fine structure, starting with high-confidence matching.
Our representation allows a spatio-semantic bilateral
search to make this possible. The framework can also
use other generalized distances to grow the region for
specific applications.

◦ A hybrid implicit-explicit representation that is
memory-efficient and fast to render also facilitates the
distillation of semantic information for improved seg-
mentation. Our results show improved accuracy and
fine-grain object details in very challenging situations
over contemporary efforts.

◦ An easy-to-use, GUI based tool to interactively seg-
ment objects from an RF representation to facilitate
object replacement, alteration, etc.

◦ Consistent 2D/3D segmentation masks for a few
scenes and objects created manually using our method
to facilitate future work in segmentation, manipula-
tion, and understanding of RFs.
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2. Related Work

Radiance field research work is extensive and fast-
growing. Hence, we restrict our related works discussion to
three relevant topics, i.e., hybrid representations, manipula-
tion of radiance fields and feature-encoded semantics. For a
more comprehensive background, we encourage the reader
to refer to the latest surveys in this area [45, 54].

Hybrid Representations: In the past several years, various
representations have been employed for the NVS applica-
tions [15,23,50]. The latest line of works based on implicit
volumetric representations [2,30,60] specifically has shown
great promise by leveraging the Radiance Fields (RF) [63]
for comprehensive scene representation. NVS, from the
perspective of radiance fields, involves volumetric render-
ing [30] from a particular viewpoint. However, despite its
vast utility, NeRF demands tens of hours of training time per
scene. The computational overhead issue has been the focus
of subsequent works like PlenOctrees [57], KiloNeRF [37],
etc. which borrows efficient techniques from the traditional
3D literature. Later, Plenoxels [10] and DVGO [42,43] have
advanced on this front by harnessing the lattice structure in
a hybrid representation with implicit field features encoded
on an explicit spatial grid. This significantly reduces the
training time overhead to 5-10 minutes per scene by trading
it off with increased storage requirements. InstantNGP [31]
reduced the training time to few seconds using multilevel
hash encodings. Recently, TensoRF [7] proposed a tensor-
decomposed set of matrix-vector representation for the ra-
diance feature lattice structure, which addresses both the
storage and time overhead issues. We base our method on
TensoRF representation to exploit this gained efficiency and
explicit geometric information.

Editing: The advent of RFs has paved a principled way
for altering the appearance of 3D scene content. Many
extended this approach to solve problems in varied do-
mains on the editing problem. More specifically, works
like [3, 4, 32, 41, 61] have disentangled the photo-realistic
rendering equation to account for the material and light-
ing edits. Others like [33] and [18, 58] have aimed to alter
the appearance via post-hoc image-based stylization mod-
ules [13, 20]. Apart from such appearance edits, meth-
ods like [8], [55] have concentrated on geometric defor-
mations of object-centric scenes represented as Radiance
Fields. Our proposed method allows both appearance and
geometric scene manipulations.

Semantics: For the scene, understanding the semantic in-
formation of the scene is essential; still, only a few solutions
have been proposed in this area. Initial methods like Seman-
tic NeRF [62] tried directly regressing semantic labels in the
novel views from sparse priors. A few leveraged deep image
features like DINO [6] and LSeg [24] to attribute semantics

to the 3D scene points. N3F [48] and DFF [21] demonstrate
object-specific segmentation using deep semantics. Though
these methods support segmentation, interactive content ad-
dition and removal are not supported by them, as the under-
lying scene representation is an implicit neural function that
prohibits easy alterations and extensions into other applica-
tion scenarios.

In this work, we use a 2D-3D distillation-based approach
similar to N3F and DFF, but focus on fine-grained interac-
tive segmentation. Initial works like GrabCut [39] and its
variants utilized positive and negative user strokes to obtain
the correct segmented objects. Subsequent variants [25, 40]
have augmented this by leveraging deep learning in the tem-
poral and non-temporal domains. NVOS [38] follows a 3D
variant of GrabCut using the positive and negative strokes
for segmentation of scenes represented as RFs and MPI [50]
but struggles to produce faithful segmentation while incur-
ring significant performance overhead. We draw inspiration
from them and build upon the proven methods like seman-
tic features, nearest neighbor matching, and voxel carving
techniques [17, 22] by extending them to radiance fields.
We experimentally prove how such simple techniques com-
bined with the appropriate scene representation can improve
result quality and fine details while simultaneously being
quite intuitive, interpretable, and efficient (80× faster than
NVOS).

3. Method
We first provide the basics on radiance fields and the fea-

ture distillation strategy related to our scene representation.
We then detail our proposed interactive segmentation work-
flow comprising 2D-3D feature matching, region growing,
and manipulation techniques on this learned representation.

3.1. Radiance Field Representation

A radiance field (RF) [63] F maps the scene radiance
values as view dependent RGB color c ∈ R3, given a con-
tinuous point x ∈ R3 and viewing direction d ∈ S2 in space
as inputs: F(x, d) : R3 × S2 → R3.

NeRF [30], and its variants [2,27,60] encoded this map-
ping as the neural function using an MLP, with a low
memory footprint but high training and rendering overhead.
They also store scalar point density σ ∈ R which is used for
differentiable volumetric rendering to train the network:

Ĉ(r) =
(∑K

i=i Tiαici

)
where (1)

αi = 1− e−σiδi and Ti =
∏i−1
j=1(1− αj). (2)

Here for a given point i along a ray, δi is the distance to the
sampled point, Ti is the accumulated transmittance, and ci
is the view-dependent color for the point. Later efforts like
Plenoxels [10], and DVGO [42] stored the field variables in
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a lattice structure akin to a 3D voxel grid, significantly im-
proving the training and rendering times at the cost of high
storage requirements. These quantized values are trilinearly
interpolated and decoded to render color value at any point.
The grid structure provides easy spatial context and explicit
representation leading to higher efficiency. Recently, Ten-
soRF [7] proposed a matrix-vector decomposition represen-
tation of this lattice, reducing storage requirements while
facilitating efficient training and view generation. We use
TensoRF as the basis of our work. The top part of Fig. 2
shows our radiance field capture step, with the volume rep-
resented using TensoRF. In the case of the quantized rep-
resentation of radiance fields, the radiance is obtained as
follows:

σi = ψ(V σ, xi) and ci = µrbgθ (ψ(V f , xi), d). (3)

Here σ is the density of the volumetric space, V f the ra-
diance feature grid of appearance features f , and ψ indi-
cates trilinear interpolation. While rendering a given sample
point xi ∈ R3 along the ray direction d, a small decoding
MLP µrbgθ (fi, d) → ci is evaluated. The final color of a
ray is calculated by combining all sample colors ci at every
point xi along it using the Eq. (1). This is used to reduce
the photometric loss L(rgb) optimizing for both the radiance
feature lattice V f and parameters θ of MLP (µ).

3.2. Semantic Features Distillation

Object segmentation requires knowledge of scene se-
mantics. We include an additional feature into the ra-
diance field for this. In order to attribute semantics to
the radiance field, we distill contextual knowledge from
a large pre-trained teacher model similar to the prior art
[21, 48]. Specifically, our teacher is a vision transformer
model trained using self-supervision and is shown to pay
attention to semantically meaningful objects in the scene in
a class-agnostic manner. This knowledge from the teacher
is distilled into the student radiance field in addition to the
color and density values as point semantic features φ ∈ Rm.
Thus the mapping now becomes: F(x, d) : R3 × S2 →
R3 × R × Rm. More concretely, we use 2D semantic fea-
tures using the DINO ViT-b8 model [6] for each input posed
image. Recent efforts [21, 48] also use DINO; unlike them,
we directly optimize for the features on the voxel grid in
the TensoRF representation without a neural network. We
also do not encode the direction dependence in these seman-
tic features since the object semantics are direction agnos-
tic. We trilinearly interpolate the distilled semantic feature
φi = ψ(V φ, xi) for a point xi from the learned feature lat-
tice V φ. We combine the φi along the ray using the Eq. (1)
like color ci. The TensoRF representation is optimized to
minimize the total loss

L = Lrgb + λLfeature (4)

to obtain the final radiance field with φ, V f , and V φ. Both
losses Lrgb and Lfeature are calculated using L2 norm.

High-resolution feature rendering results in high-
frequency feature fields similar to N3F [48]. (See the sup-
plementary document for distilled feature field visualiza-
tions.) Explicit semantic features at every point open the
way to adapt traditional 3D analysis techniques to radiance
fields in a semantically meaningful fashion. Segmenting ob-
jects in 3D voxel space and using bilateral filtering inspired
search are examples that go beyond what prior neural rep-
resentations have shown.

3.3. 2D-3D Feature Matching

For object segmentation, the user picks a(few) reference
views and annotates the regions of interest using a brush
stroke. Semantic DINO features associated with the marked
pixels are collected. DINO features were shown to fare well
using 1-NN feature matching for good 2D semantic seg-
mentation [6]. However, a single DINO feature will not
suffice to segment complex objects with diversity. We clus-
ter the input features using K-Means to obtain a fixed-size
exemplar set of features for matching in 3D space. We use
nearest neighbor feature matching (NNFM) on the exemplar
set to label each voxel as foreground or background. The
result is stored in a 3D bitmap. In this step, we use a tight
threshold to identify a high-confidence seed region, which
is processed further. Prior methods [21, 48] used a single
averaged semantic feature from the user-specified patch to
match 2D to 3D. Their implicit neural representation can
only be segmented after φ values are rendered. Feature
matching methods like NNFM are too costly to evaluate at
every point on the ray using a neural representation.

The segmentation results can also be precomputed and
stored, facilitating downstream tasks like view generation
and editing on the fly without repeated processing.

3.4. Region Growing

The high confidence seed region (M0) from the previous
step is grown in the volume-space to delineate the complete
object volume. We do this in joint spatio-semantic space to
include proximate voxels that are also semantically close.
We adopt a Bilateral Filtering [46] inspired search dubbed
as Bilateral Search on the voxel grid using the spatial fea-
ture x and semantic feature φ values as filter’s domain and
range kernels, respectively. We iteratively grow the current
bitmap region Mr till convergence, as given below.

Mr+1(x) = Tτ (
1

W

∑
xi∈Ωx

Mr(xi) gσφ(φ2
i ) gσs(s

2
i ))

where φi = ‖φxi − φx‖ , si = ‖xi − x‖

and W =
∑
xi∈Ωx

gσf (φ2
i ) gσs(s

2
i ).
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Here Mr is the rth iteration of filtering; φx is the distilled
semantic feature at point x in the volumetric space; gσ is the
Gaussian smoothing functions with variance σ; Tτ is binary
thresholding against value τ ; and Ωx is the immediate voxel
neighbors of x. We find that τ = 0.2 works well for our
scenes. The seed region expands to the boundaries of the
desired object in a few iterations of bilateral filtering.

3.5. User Interactivity

Region growing results in a stable voxel content based on
the input strokes. The user can add or remove parts inter-
actively if the extracted content misses out on a few details
or when some extraneous content floods into the segmented
region. We use positive and negative strokes to add and re-
move the content in the image space, as followed by meth-
ods like GrabCut [39]. The mask of the negative segment is
subtracted from the mask of the positive segment to get the
final segmented objects. We find practically that even com-
plex objects can be segmented well with a few positive and
negative strokes, as shown in the results in the paper and in
the supplementary material. Additionally, our method pro-
vides interactive feedback for every stroke (as can be seen
in Tab. 1) that allows users to segment interactively unlike
methods like NVOS [38]. Implementation details have been
reported in the supplementary document.

4. Results

In this section, we discuss the comparisons and results of
our proposed method against the existing semantic features

(a) Stroke 1 (b) Output 1

(c) Stroke 2 (d) Merged Output

Figure 3. Multiple Positive Strokes: When the method fails to cap-
ture some of the details using initial set of strokes, the user can
iteratively add more positive strokes to recover the desired object.
(a) depicts the initial strokes which lead to missing teeth as shown
in (b). Addition of a small stroke on one of the teeth (c) and fol-
lowed by region grown captures full-details as shown in (d).

distillation-based Radiance fields segmentation approaches.
Specifically, we focus on the two recent approaches: DFF-
DINO [21] and N3F [48]. Both use extracted features
from input images and fuse them into the volumetric space.
DFF additionally concentrates on the language queries us-
ing LSeg [24], but both approaches are similar regarding
semantic features. As the code of DFF is not publicly avail-
able, we compare our method against N3F, which is similar
to DFF for this part.

4.1. Comparison

As discussed earlier, our approach supports region se-
lection either by a patch or a hand-drawn brush stroke as
shown in Fig. 1. To obtain the desired volumetric content,
we follow the methods described in the Sections (Secs. 3.3
and 3.4). Fig. 4 shows our segmentation results on a few
challenging scenes.

The usage of clustering followed by NNFM clearly out-
performs the prior approach of average matching [21, 48].
The direct incorporation of nearest neighbor feature match-
ing (NNFM) in these approaches leads to significant ren-
dering delays, while the choice of neural space limits them
from using elegant techniques like bilateral search.

In Fig. 4 it can be observed that in the case of the COLOR
FOUNTAIN , the simple average feature matching technique
faithfully recovers the region of interest albeit with some
additional noise. However, as the scene’s complexity and
region of interest grows, the prior art fails to garner pleas-
ing results. This can be observed clearly in the case of the
three LLFF [29] scenes (CHESS TABLE , SHOE RACK ,
STOVE ). When only simple averaging is employed, the
CHESS TABLE scene suffers due to the erroneous feature
matches. The clustered matching mitigates the errors and
confines the segmented volume to the TABLE. A similar
effect can be observed in the case of STOVE where the ob-
ject of interest is sparingly covered in the input images but
is faithfully recovered with distinct boundaries, unlike N3F.
The last scene SHOE RACK is a classic example where re-
covering white-sole might be challenging even with the best
feature matching scheme. This is where the bilateral search
helps in exploiting multi-domain content by conditioning
on the spatio-semantics.

We also qualitatively compare our results with another
stroke-based approach NVOS [38] in Fig. 12. Quantitative
evaluation of mIOU/mAcc scores on all the NVOS dataset
also reflect similar behavior. Using the input strokes and GT
masks of NVOS, we obtain an mIoU of 83.75% (compared
to 70.1% of NVOS) and an mAcc of 96.4% (compared to
92.0% of NVOS), on the same LLFF dataset. Addition-
ally, our interactive scheme allows for improving the seg-
mentation in subsequent iterations. We achieved an mIoU
of 90.8% and an mAcc of 98.2% on the same dataset using
multiple strokes. A detailed depiction of results is discussed
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Figure 4. Our ISRF vs N3F/DFF [21, 48]: Both N3F and DFF employ a similar strategy for segmentation. We tweak the threshold for
their method and bring out the best results and show their respective results in the Row 2. Row 3 shows our results with the same queried
patch (highlighted in green[ ] in Row 1). Since our method works best on user provided strokes (shown in yellow[ ] in Row 1), we show
the corresponding results in Row 4. While N3F/DFF are able to recover simpler objects like COLOR FOUNTAIN , they fail to capture other
objects. Our method faithfully recovers the queried objects with clear and smooth boundaries. For more details, please refer to Sec. 3.4.

in the supplementary document.

4.2. Interactive Segmentation with User Strokes

Our method allows both adding and removing content
using positive and negative strokes. The cases where the
single stroke fails to obtain the desired content in the ex-
tracted space, the user can add another positive stroke to
add more content. Fig. 3 shows one such example where
the excavator (‘JCB’) has missing teeth in the extracted re-
gion. Drawing an additional stroke and bilaterally growing
the region again brings out the full desired result. This ef-
fectively grows the bit-map Mr by segmenting more desir-
able regions from the volumetric space.

Similar to adding new content, some scenarios demand

the need to remove extraneous content from the extracted
region. In such scenarios, we mark the region to be re-
moved and grow it independently of the positive content.
Once fully grown, the full extent of the negative/undesirable
content is obtained which we subtract from the previously
extracted regions obtaining the edited bit-map Mr. Fig. 1
shows one such example where the REFLECTIVE GRAN-
ITE floods into the TABLE region. We add a negative stroke
(red) to remove this undesired region.

Incorporating these functionalities is not trivial in the
case of the prior art, as an additional negative match or a
positive match calculation at the time of rendering is a te-
dious task.
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Figure 5. Results. Left: NVOS [38] (from their paper), Middle: reference masks from NVOS-dataset, Right: Our ISRF system. More
results can be seen in the supplementary document.

5. Experiments

In this section, we discuss various feature-matching vari-
ants we used to obtain the high-confidence seed region. Ad-
ditionally, we show some immediate applications of radi-
ance field segmentation.

5.1. Ablations

In order to obtain a high-confidence region, which acts
as a seed for the bilateral filter, a feature-matching tech-
nique is required to match the marked features with the dis-
tilled semantic features in the volumetric space. To this end,
we experimented with three different feature matching tech-
niques, namely (1) Average Feature Matching, (2) Nearest
neighbor Feature matching(NNFM) (3) K means + NNFM,
which are compared in the Fig. 6. It can be easily inferred
from Fig. 6b that average feature matching performs poorly
in this task. In order to improve these results, we resort to
the nearest neighbor feature matching. Though this recovers
a good high confidence region, it is accompanied by addi-
tional noise as seen in Fig. 6c Furthermore, as the marked
region’s size grows, computation also becomes tedious in
this case. To address this, we cluster the features using K-
means clustering and then do an NNFM that reduces com-

Step Time Taken
Pre-training radiance field 7 mins

Training feature field 2.5 mins
K-Means Clustering 2 secs
3D Feature Query 1 secs

Bilateral Region Growing 0.3 secs

Table 1. Timings of different steps of the ISRF pipeline

(a) Ground Truth (b) Average Feature Matching

(c) NNFM (d) K-Means + NNFM

Figure 6. Feature Matching: This figure shows the high confidence
region of the RF (a) obtained using different feature-matching
techniques for a particular stroke. While Average feature match-
ing (b) fails to cover the entire object due to loss of information
during the averaging process, NNFM (c) without clustering leads
to noise bleeding. Use of NNFM after clustering (d) eliminates
noisy regions while also considering multiple features at once.

putational overhead and avoids noisy matches, as seen in
Fig. 6d. When K = 1, clustering results in mean features
of the selected stroke, and as K approaches high values, the
search approximates NNFM.

5.2. Editing

After obtaining a good segmentation, many appealing
opportunities for editing open up:

Object Removal: The removal of an object from the scene
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is a simple task and is shown in Fig. 7a where the POT in
GARDEN scene is removed. Please note that we do not in-
paint the scene post content removal.

Affine transformation: As we have good quality seg-
mented volumetric content, we can perform affine transfor-
mations on voxel space (POT) for object position manipula-
tion. We demonstrate this in Fig. 7b. One can look behind
the TABLE on the GROUND to see the repositioned POT.

Geometric Scene Composition: With high-quality 3D
segmentation masks, we can also composite two different
radiance fields. We demonstrate this in Fig. 7c. We follow
the composition technique of [52] to accomplish this task.
The JCB is picked from the KITCHEN scene from the [2]
dataset and placed in GARDEN . Please note that we do not
take global illumination into account for these edits.

Appearance Editing: As the appearance vector is associ-
ated with each voxel in the grid, we can alter the appearance
of the individual segmented objects. We demonstrate this by
stylization the content using [14] in Fig. 7d.

5.3. Discussions and Limitations

Our method improves upon the prior art on several fronts
but has its own shortcomings. Like prior works, we rely on
DINO features to represent object semantics and this can
result in artefacts if the features do not capture the seman-
tics properly. Third column in the last row in Fig. 4 shows
a small false appendage at the bottom of the utensil holder
which can not be easily removed interactively without eat-
ing into object’s body. Better semantic features can resolve
this problem. Also, the leftmost example in Fig. 7 shows

(a) Removal (b) Translation

(c) Scene Composition (d) Appearance Editing

Figure 7. Scene manipulation: Segmented object(s) can be edited
in different ways. In (a), we remove the POT from the center of
the table. In (b), we translate the POT to the GROUND behind the
TABLE. In (c), we replace the POT with the LEGO JCB obtained
from a different scene (KITCHEN ). We stylize the newly added
LEGO JCB using [14] in (d). All scenes are from [2].

that the shadow of the pot is left behind on the granite cen-
ter of the table even after the pot is edited out. Removing
the pot from the geometric representation does not guaran-
tee removal of its secondary effects on neighbouring ob-
jects like shadows or highlights, without elaborate geomet-
ric post-processing. Our method may also struggle in seg-
menting geometry well if the voxel resolution is low com-
pared to the scale of object details as shown in supplemen-
tary results. Multiresolution voxel representations can solve
this problem with additional overhead.

6. Conclusions and Future Work
In this paper, we presented an easy and accurate method
to segment objects from a TensoRF representation of ra-
diance fields and showed simple scene editing operations
facilitated by this. The efficient voxel-based representation
we use makes our method more versatile and simple com-
pared to the prior works in this direction. We show several
results on multiple challenging scenes (and present more
in the supplementary document). Semantic segmentation is
a first step towards interpretation, understanding, and ma-
nipulation of 3D scenes. This work provides high quality
segmentation that can be the basis for several such down-
stream tasks. A simple extension to the current method
would be to generalize the distance used for matching in
the NNFM and region-growing steps to include other fea-
tures like color latent vectors. Extending the current method
to a InstantNGP [31] framework, while incorporating addi-
tional multi-domain explorations strategies like guided fil-
tering [17] would be a good direction to explore.

In the future, multi-representation processing might
be needed by combining parts of captured RFs, graphics
models, SDFs, etc., to provide maximum flexibility in
Virtual Reality and Augmented Reality applications. This
requires processing parts of the RFs directly without going
through the full learning process post-editing. This is a
promising direction of work that we intend to pursue in the
future.
Potential negative societal impact: Our work presents a
tool to manipulate radiance fields captured casually. While
ill-intentioned manipulation to create the appearance to
fake scene content is possible using such a tool, the risk is
negligible compared to the sophisticated image or geometry
editing tools that are already prevalent. Our method needs
very little additional data and doesn’t directly use vast
internet collections with or without consent.
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1. Implementation Details
All the methods proposed in the paper have been imple-

mented using PyTorch [36] branching off the code provided
by DVGOv2 [43]. All experiments are performed using
a commodity hardware equipped with AMD Ryzen 5800x
and a NVIDIA RTX 3090.

The feature components of the radiance fields namely
radiance latent vectors and the learnt DINO features are
stored using VM decomposition proposed by TensoRF [7].
For radiance latent vectors, we use VM-48 representation of
TensoRF and for DINO features, we use VM-64 variant of
TensoRF. The segmentation masks and densities have been
stored as a full voxel grids.

The DINO ViT-b8 [6] model provides 768 features for
each patch of 8 × 8 pixels in an image. We reduce the di-
mensionality of these features by doing a principal compo-
nent analysis reducing the effective dimension to 64. This
is consistent with the prior works [21, 48]. For each pixel,
the feature is calculated by referring to the feature of the
respective patch that pixel corresponds to.

We first pre-train the model for the volumetric density
and radiance for 20, 000 iterations. Once the radiance field
is stabilized on the VM-48 TensoRF representation, we in-
troduce distillation using student-teacher strategy similar to
that of [21,48] on the VM-64 TensoRF variant. Upon adop-
tion, the resultant VM-48 variant of TensoRF along with its
shallow MLP represents the radiance field, and VM-64 con-
stitute the distilled features. It is to be noted that the distilled
features are not accompanied by a shallow MLP. The fea-
tures are store at voxel lattice locations and tri-linearly in-
terpolated to be compared and optimized against the DINO
features without the involvement of any non-linearity. The
adoption is done with λ = 0.001 for the weighted loss func-
tion for 5, 000 iterations. The loss is taken on the features
and radiance together to maintain consistency.

We choose K = 10 when applying K-Means to the set
of features selected from the user’s brush stroke. For the
bilateral search, the value of σφ and σs are set to 10.0 and
the 1.0 respectively while the threshold value τ is 0.1.

2. Scene Editing
In this section, we explain the procedures that were fol-

lowed for editing the 3D scenes post segmentation. The
segmentation procedure provides a 3D bit map representing
the segmented voxels. Utilization of an additional bitmap
also assists in faster rendering as the voxels with segmenta-
tion mask values of 0 can easily be filtered out. Fig. 8 shows
the additional results of scene editing.

2.1. Object Removal

For removing a segmented object from the scene, we al-
ter the evaluation of the density for a 3D point. We simulta-

neously evaluate the bit map value bx at the queried point.
To segmented the object of interest (foreground), the effec-
tive density σ′x is σx ∗ bx. Similarly, to render the back-
ground the effective density σ′x is σx ∗ (1.0− bx).

2.2. Translation

If an object needs to be moved to another location, the
ray queries lying inside the object’s voxel space can be
shifted to the desired location. Let t be the translation vec-
tor for the object to be moved, then the object’s ray-point
query changes as shown below.

σ′x, rgb
′
x = σx, rgbx ∀ bx = 0

σ′x, rgb
′
x = σx+t, rgbx+t ∀ bx = 1

2.3. Scene Composition

To perform scene composition, we follow a similar strat-
egy used by D2NeRF [52]. We alter the volumetric render-
ing equation to account for density and color from both the
scenes as shown below:

Ĉ(r) =

∫ tf

tn

T (t) (σ1(t)c1(t) + σ2(t)c2(t)) dt

T (t) = exp

(
−
∫ t

tn

(σ1(s) + σ2(s))

)
ds

The results for scene composition have been shown in
the main paper and Fig. 8 of the supplementary.

2.4. Appearance Editing

Here, we apply style transfer on an already composed
scene. We first calculate a 3D bitmap for the JCB lego in
the KITCHEN scene. Then, we generate a new set of styl-
ized training images using the method proposed by [14, 20]
using a reference image. The appearance latent vectors and
the rendering MLP is fine-tuned according to the new train-
ing images while keeping the density and feature weights
frozen. This transfers the style from a reference image to
the 3D object.

3. Quantitative Analysis
To quantitatively compare our method on the LLFF

Dataset [29], we hand-annotate the segmentation masks
for the prominent objects in the CHESS TABLE , COLOR
FOUNTAIN , STOVE and SHOE RACK scenes. Tab. 2 re-
ports the segmentation metrics for the four scenes. In our
method, to predict the segmentation mask, we threshold α
to be greater than 0.1 while rendering. This removes the
low volumetric density seeping in that contribute negligibly
in the rendered visuals.
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(a) Original Rendered Image (b) Removal of Pot (c) Composition (d) Style Transfer

Figure 8. Seamless Progressive Scene Editing: Image (a) is the reference rendered viewpoint. In (b), the pot has been removed. Image (c)
shows scene composition. The JCB from KITCHEN scene has been placed on the top of the table in the GARDEN scene. Image (d) shows
appearance editing of specific objects. We apply style transfer on just the JCB. For more details please refer to Sec. 2.

Scene Metric N3F Ours (Patch) Ours (Stroke)

CHESS TABLE
Mean IoU ↑ 0.344 0.864 0.912
Accuracy ↑ 0.820 0.985 0.990

mAP ↑ 0.334 0.874 0.916

COLOR FOUNTAIN
Mean IoU ↑ 0.871 0.927 0.927
Accuracy ↑ 0.979 0.989 0.989

mAP ↑ 0.871 0.927 0.927

STOVE
Mean IoU ↑ 0.416 0.827 0.819
Accuracy ↑ 0.954 0.992 0.992

mAP ↑ 0.387 0.824 0.817

SHOE RACK
Mean IoU ↑ 0.589 0.763 0.861
Accuracy ↑ 0.913 0.965 0.980

mAP ↑ 0.582 0.773 0.869

Table 2. This table denotes the Mean IoU (Intersection Over Union), Accuracy and Mean Average Precision measurements for the four
LLFF scenes shown in the main paper. The ground truth segmentation masks have been hand-annotated for comparison.

(a) With Steel Balls (b) Without Steel Balls

Figure 9. Removal of Steel Balls: We use the MipNeRF360 [2]
formulation in voxel space for unbounded 360 degree scenes. This
gives fewer number of voxels to the background objects compared
to the central volume of interest. In this scene, we remove the steel
balls appearing in the background region of the scene.

4. Region Growing: Bilateral Growth

In this section, we discuss the effect of bilateral filter-
ing on the radiance fields and how it improves the final
result. Even after employing an efficient feature-matching
technique, we often obtain a high-confidence volumetric re-
gion with missing constituting parts. This is because the
content search solely depends on feature distances while ig-

noring the spatial priors. To resolve this issue we resort to
Bilateral search which exploits spatio-semantic domain pri-
ors resulting in accurate segmentation constituting all the
desired regions of the semantic object. This is demonstrated
in Fig. 10, where the initial high-confidence region misses
the outer leaf of the dry plant. While the bilateral region is
growing, we iteratively add more details into the extracted
region, finally obtaining desired volumetric content. This
content can be further used for various purposes as dis-
cussed in Sec. 2.

5. Evaluation strategies against SOTA tech-
niques

5.1. N3F/DFF

As mentioned in the main document, we experiment with
various thresholds in the case of N3F/DFF [21, 48]. We re-
port the quantitative metrics (Tab. 2) of our method against
the best results of their methods. N3F/DFF don’t produce
good results for any threshold as shown in Fig. 13.
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(a) Rendered Image (b) High Confidence Region

(c) Iteration 1 (d) Iteration 2

Figure 10. Region Growing: Image (a) is the reference rendered
viewpoint. Image (b) is the high confidence region which misses
out frontal region of the dry-leaf when extracting the content. Im-
age (c) shows the result obtained after the first iteration of bilateral
filtering, which captures most of the desired region of the leaf. Im-
age (d) is the result of the bilateral filtering applied for the second
time to include intricate details such as strands around the dry-leaf.

NVOS Ours(NVOS Stroke) Our best
mIOU mAcc mIOU mAcc mIOU mAcc
70.1 92.0 83.75 96.4 90.8 98.2

Table 3. Quantitative metrics(mIOU and mAcc) of NVOS against
Ours using NVOS provided strokes and additional strokes using
our interactive feedback tool

5.2. NVOS

To make a fair comparison against NVOS [38], we uti-
lize the masks provided by NVOS and evaluate the quanti-
tative numbers on their dataset. We observe that our method
out performs NVOS both qualitatively and quantitatively as
shown Fig. 12 and Tab. 3 even when using their strokes. Us-
ing our own interactive tool with additional strokes achieve
much better results.

6. Interactive Segmentation
Our method provides interactive segmentation capabili-

ties to the user with the incorporation of positive and nega-
tive brush strokes similar to GrabCut [39].

Upon the addition of a new positive stroke, a new seg-
mentation mask bp is calculated using the procedure de-
scribed in the main paper. The user has the option to grow
this new region using bilateral filtering until not required.
The new segmentation mask bnew is given by b ∪ bp.

When the user adds a negative stroke, a new segmenta-
tion mask bn is calculated. Similar to a positive stroke, the
user has the option to grow this region using bilateral filter-

(a) Rendered View 1 (b) Rendered View 2

(c) Segmented Trex (d) Depth Map

Figure 11. Finer Segmentation: Images (a) and (b) show rendered
views of T-Rex from the LLFF dataset [29]. Image (c) shows
the segmented output of T-Rex scene. Our method achieves fine-
grained segmentation of objects such as the rib-cage bones of T-
Rex. However, on close observation, the region near the tail bones
background bleeds in. This is due to the wall and the tail-bone lie
at the similar depth as shown in the depth map (d). This can be
mitigated by having more 3D information (better training views)
or higher voxel grid resolution.

ing until not required. The new segmentation mask bnew is
given by b ∩ (b ∩ bn)′ (X ′ denotes the complement of X).

7. Critical Analysis
7.1. DINO Features

The teacher DINO features calculated on the training set
of images are for patches of size 8x8. This method asso-
ciates a total of 64 pixels to the same feature vector. As
shown in Fig. 15, the teacher features appear to be in low
resolution due to this. When performing the teacher-student
training using the joint loss function, the features learnt by
the student are finer in detail due to assistance from vol-
umetric density. Hence, the student surpasses the teacher
during distillation. This is evident from Fig. 15 as features
are allocated with distinct boundaries in the voxel space.

7.2. Finer Segmentation

Our method can segment out fine-grained details such as
the ribs of a T-Rex as shown in Fig. 11. However, it requires
accurate 3D information to achieve this. In the T-Rex scene,
the tail-bones cannot be distinguished from the wall behind,
since the training set images do not cover views which in-
dicate the separation. Therefore, the optimized model con-
taining the wall and the tail bones lie at similar depths as
shown in Fig. 11d. Use of additional images covering more
viewpoints can circumvent this issue.

14



Reference NVOS Ours NVOS Stroke Ours Best

Figure 12. left to right: Reference segmentation using NVOS professionally segmented mask, Result of NVOS [38], Our result using
NVOS stroke, Our result using additional strokes. The quantitative comparisons are mentioned in the main document where our method
performs better than NVOS even when using NVOS strokes. Please zoom using Adobe Acrobat/Okular reader to see the details.

(a) CHESS TABLE (b) COLOR FOUNTAIN (c) STOVE (d) SHOE RACK

Figure 13. N3F/DFF Results: In this figure we show result of DFF/N3F [21, 48] on different thresholds and we reported the best of their
method in main document. It can be seen that despite varying the thresholds the result is poorly segmented. The background objects are
starting to bleed into the foreground. For the results of our method on the same scenes, please refer to the main paper.
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Figure 14. Interactive GUI Tool: We also release an easy-to-use interactive GUI tool which can be used to draw strokes and segment
radiance fields.
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Figure 15. Student Surpasses Teacher: The 4 columns of this figure shows the DINO features used as teacher vs the ones learnt by student
post optimization. Since, the student learns finer features than the teacher due to assistance from the volumetric density, we can claim that
the student surpasses the teacher. This is consistent with the prior art N3F and DFF.
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