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Figure 1: QFSEF: Given a poorly lit image as input (left), we factorize it into multiple illumination consistent layers using a pure quaternion
matrix factorization scheme (section 3), which we then use to simulate an exposure stack (mid) and fuse to obtain an enhanced image (right).

ABSTRACT
Image Fusion maximizes the visual information at each pixel loca-
tion by merging content from multiple images in order to produce
an enhanced image. Exposure Fusion, specifically, fuses a bracketed
exposure stack of poorly lit images to generate a properly illumi-
nated image. Given a single input image, exposure fusion can still be
employed on a ‘simulated’ exposure stack, leading to direct single
image contrast and low-light enhancement. In this work, we present
a novel ‘Quaternion Factorized Simulated Exposure Fusion’ (QFSEF)
method by factorizing an input image into multiple illumination
consistent layers. To this end, we use an iterative sparse matrix fac-
torization scheme by representing the image as a two-dimensional
pure quaternion matrix. Theoretically, our representation is based
on the dichromatic reflection model and accounts for the two scene
illumination characteristics by factorizing each progressively gen-
erated image into separate specular and diffuse components. We
empirically prove the advantages of our factorization scheme over
other exposure simulation methods by using it for the low-light
image enhancement task. Furthermore, we provide three exposure
fusion strategies which can be used with our simulated stack and
provide a comprehensive performance analysis. Finally, in order to
validate our claims, we show extensive qualitative and quantitative
comparisons against relevant state-of-the-art solutions on multiple
standard datasets along with relevant ablation analysis to support
our proposition. Our code and data are publicly available for easy
reproducibility and reference. 1

1https://github.com/sophont01/QFSEF
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1 INTRODUCTION
Image enhancement is a classic Computer Vision application in-
volving problems like image denoising, super resolution, contrast
enhancement, deblurring etc. Low light image enhancement is also
a well studied research problem with applications benefiting im-
age classification, recognition, reconstruction etc. Several solutions
have been proposed to this end using a variety of inputs like flash-
noflash image pairs, bracketed exposure sequences, light field data,
raw sensor signals etc. Flash-noflash images enable a range of ap-
plications like material estimation, light spectra estimation, illu-
mination map estimation etc. but the with the core limitation that
scene areas far away from the flash illumination are not resolved
properly in the result. On the other hand models which assume
raw images from the camera or light field data as inputs are restric-
tive in everyday applications. Comparatively it is easy to obtain a
bracketed sequence of images with varying shutter speed (i.e. an
exposure stack) using already available camera modes and exter-
nal installable softwares. We focus on this category of low-light
image enhancement methods and propose a technique to simulate
an exposure stack from a single poorly illuminated input image.
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Figure 2: Conceptual Overview: An abstract block diagram of our proposed approach shows our three system sub-modules: Layer
Factorization, applies gradually relaxed iterative RPCA on Quaternion representation of the input image, followed by Exposure Stack
Simulation, where we combine factors with original image to render controlled illumination image sequence and finally Exposure Fusion
where we merge the stack information via three strategies to obtain enhanced results.

Several stacked image representations have been used in the
literature for multiple applications. Apart from the exposure stacks,
bracketed sequences of images with varying depth-of-field have
also been used in several papers [30]. Several methods also exist
which use layered depth information for view synthesis and scene
understanding [53]. Semantic information has also been factorized
into multiple layers using soft segmentation, color unmixing and
image matting in [4, 5]. The main advantage of layered representa-
tions is that the similar image regions are grouped together which
allows easy global manipulation without requiring adaptive local
adjustments. Additionally, compared to patch based processing, our
estimated layers have an intuitive semantic meaning and can be
directly utilized by end users for preferential adjustments.

Single image low-light enhancement is a challenging task con-
sidering the limited amount of information available. This is further
exacerbated due to camera sensor noise prevalent in the dark im-
age regions, which, if not handled properly will lead to colored
artifacts in the results. Earlier solutions for this task were mostly
optimization based involving histogram equalization, tone curve
adjustment, Retinex theory based illumination map estimation etc.
Recent advances in the field mostly employ deep learning tech-
niques and train priors using supervision on large datasets. Current
state-of-the-art methods are inspired by the fundamentals of the
the problem and try to encode domain expertise in their systems e.g.
decomposing the problem using Retinex theory [56], constructing
multiscale Laplacian pyramids [2], adaptable tonal curve adjust-
ment [25] etc.

In this work, we present a new insight into the problem by
proposing to factorize an image into a sequence of specular factors.
We propose a method to progressively remove the specular content
from the image by performing iterative sparse matrix factorization
which can be used to render a virtual exposure stack. This con-
verts the difficult single image exposure correction problem into
a simpler exposure fusion task thereby allowing us to directly use
existing exposure fusion strategies on a single image. In order to
make this simple idea work, we harness the power of Quaternions
by representing the image pixel color values on a unit norm sphere
of pure quaternions (i.e. no real component). This enables better
intercolor spectral representation across channels compared to the
traditional concatenated color channel approach and allows for a
simple yet elegant and interpretable solution.

To summarize, following are our main contributions in this work:

◦ We present a novel single image exposure fusion method by
simulating an exposure stack for low light image enhance-
ment application.

◦ We present an iterative sparse matrix factorization scheme
for specular content estimation by using Robust Principal
Component Analysis in quaternion space.

◦ We provide performance scores and comparison with the
current state-of-the-art solutions via extensive experiments
and ablation analyses.
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2 RELATEDWORK
Quaternion Image Processing: Apart from the wider utility

of quaternions in robotics and graphics for 3D manipulation, they
have also been used in several image processing tasks. Quaternion
counterparts to several crucial techniques like Fourier transforms
[19], Singular Value Decomposition (SVD) [48], Principal Compo-
nent Analysis (PCA) [9], derivatives like Gradients and Hessians
[57], and optimizations like least square algorithm [34] etc. have
been proposed in the literature and newer techniques are being
developed. Following this, several methods based on the applica-
tion of these techniques have also come up. Initially Sangwine
[47] used quaternion image representation for the task of color
image edge detection and proposed additional quaternion filters
in [45]. Later in [19] authors formulated vector Fourier transform
for quaternions which was then used for saliency prediction [49],
texture estimation [7], motion detection [6], image smoothing [51]
etc. Recently they have also been used for face recognition [33],
image inpainting [31] and in image forensics [59]. Here, we use one
such existing technique and propose a novel low-light illumina-
tion solution. Specifically we use the quaternion RPCA formulation
proposed by Chan and Yang [16] who employ it for the task of sep-
arating relatively sparse human voice signals from the background
musical score in a short music clip.

Robust Principal Component Analysis: RPCA as used in this
work, was first proposed by Candès et al. [15] in which they pre-
sented a closed form solution to the sparse vs. low-rank matrix
decomposition problem using a convex optimization algorithm
named Principal Component Pursuit (PCP). The method is named
RPCA because it is able to recover matrix principal components
even in the case of corrupted or missing values. Candès et al. [15]
illustrated the utility of their algorithm by using it in two computer
vision tasks: video background removal and specularity estimation.
Since its initial proposition, RPCA problem has been solved using
a variety of optimization methods [11] and used in a variety of
applications [10] in several domains like low level image analy-
sis, medical imaging, 3D computer vision and video processing
[17, 24, 29, 54, 63]. We take inspiration from the initial application
of RPCA by its authors and use it for image specularity estimation.

Illumination Analysis: From image intrinsics perspective (i.e.
Retinex theory) [8, 35], there are two fundamental components
in the image formation process i.e. object material dependent re-
flectance and scene illumination dependent shading [42–44]. Either
or both can be used for the task of image based rendering which
involves generating a new image directly from a given input image.
Controlling the first reflectance component enables applications
like retexturing, material modification, object recolouring, palette
extraction etc., while shading component can be manipulated to
perform shadow removal, glare removal, low light enhancement
etc.

Illumination manipulation can be done at either global or local
level. Global analysis involves techniques like histogram equaliza-
tion, white balancing, gamma correction, light source direction
computation, illumination spectra estimation etc. Local methods do
neighbourhood analysis and involve methods performing spatially
varying illumination and environmental map estimation techniques.

Illumination analysis has also been performed for applications like
shadow, haze, underwater blur and glare removal. It is also carried
out for image based rendering task like harmonization after com-
positing an object inside image and image relighting. In this paper
we specifically focus on low light image enhancement methods and
discuss them in detail in the next section.

Low Light Image Enhancement: One crucial category of illumi-
nation analysis is performed for the task of exposure correction in
poorly lit images. Earlier methods in this field were based on either
pixel intensity manipulation (statistically via histogram equaliza-
tion [36, 40, 41], or individually via intensity curve manipulation
[28, 60]) or tried to estimate illumination map based on Retinex the-
ory [21, 35, 55]. Recently several deep learning based methods have
been proposed which have been trained on paired image datasets
with low light images and their enhanced counterparts. Some of
these solutions have been proposed for raw inputs or require other
camera parameters as input. We restrict our discussion to the works
which assume standard 𝑠𝑅𝐺𝐵 image as input.

Gharbi et al. [22] proposed an image enhancement architecture
by introducing deep bilateral filtering. Wei et al. [56] took inspira-
tion from the retinex decomposition and proposed RetinexNet by
first splitting the image into separate reflectance and illumination
components. Later Zhang et al. [62] extended this idea by focusing
on dark regions. [25] introduced a light weight zero-shot network
which predicts global gamma correction parameters for the image
which they apply iteratively to achieve enhancement. Afifi et al.
[2] introduced a new dataset by changing exposure values from
the information obtained from the raw images and train a sequen-
tial model on the basis of image Laplacian pyramid decomposition.
Recently Jin et al. [32] proposed a multibranch model for sepa-
rately handling the overexposure caused by the light sources in
dark images. We use several such recent state-of-the-art methods
for comparison in section 4.

3 QUATERNION FACTORIZED SIMULATED
EXPOSURE FUSION

Figure 2 illustrates our QFSEF framework that can be divided into
three sub-modules namely Layer Factorization, Stack Simulation
and Exposure Fusion, which we individually discuss in detail below:

3.1 Layer Factorization
Our first sub-module performs factorization of the given input
image into multiple layers. Factorization is carried out in such a
way, so that the illumination characteristics are consistent in each
layer. Specifically, we follow the Dichromatic reflection model [52]
under which, for a given image 𝐼 , the total irradiance at any pixel
position 𝑥 is the sum of diffuse and specular reflection components
(𝐼diffuse and 𝐼specular):

𝐼 = 𝑅𝑑 · 𝑆𝑑 + 𝑅𝑠 · 𝑆𝑠 = 𝐼diffuse + 𝐼specular
where 𝑅𝑑 and 𝑆𝑑 (𝑅𝑠 and 𝑆𝑠 ) are diffuse (specular) material Re-
flectance and scene Shading respectively.

RPCA:. Specular component of the irradiance is sparse in na-
ture and can be extracted from 𝐼 via matrix factorization methods
[1, 3, 26, 27, 61]. To this end we use Robust Principle Component
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Iterative factors (𝐸𝑖 ) 𝐸𝑖+1 − 𝐸𝑖

Simulated Exposure Stack (𝑆𝑖 )

Figure 3: Layer Factorization: Input image (left) is iteratively split using quaternion RPCA into multiple factors (middle grid). Factor
differences (right grid) highlights additional information captured in each successive factor. Last row shows the exposure stack simulated
using these factors. All images have been luminance normalized (subsection 3.2) for visualization (more results available in supplementary).

Analysis (RPCA) [15] which has been used previously for various
computer vision problems [10] like background separation, denois-
ing, specularity removal, tracking etc. RPCA has a tractable convex
approximation for the original NP-hard formulation:

𝐼 = min
𝐴,𝐸

𝐴rank + 𝜆𝐸sparse ≈ min


𝐴

∗ + 𝜆

𝐸

1 s.t. 𝐼 = 𝐴 + 𝐸 (1)

Here 𝐸 and 𝐴 are estimations of the sparse specular and the
remaining low-rank diffuse components respectively. Also ∥∥∗ and
∥∥1 respectively stand for nuclear and 𝐿1 norms which are used to
approximate the original low-rank 𝐴𝑟𝑎𝑛𝑘 and sparse 𝐸𝑠𝑝𝑎𝑟𝑠𝑒 matri-
ces. 𝜆 is a positive constant for controlling the sparsity (specularity)
of the result. Equation 1 can be solved using various optimization
techniques [11]. Specifically, we employ the Augmented Lagrangian
Method (ALM) [37] which uses Principal Component Pursuit (PCP)
[15] for the optimization.

Quaternion Representation: We use the quaternion extension
of PCP introduced by Chan and Yang [16] for instrument and voice
signal separation in music clips. Quaternions are hypercomplex
numbers which can be understood as an extension of the regular
complex numbers in three dimensions with one scalar (𝑟 ) and three
vector components (𝑖, 𝑗, 𝑘) s.t. 𝑖2 = 𝑗2 = 𝑘2 = -1 and 𝑖 . 𝑗 = 𝑘 ; 𝑗 .𝑘 = 𝑖;
𝑘.𝑖 = 𝑗 ; 𝑖 .𝑘 = - 𝑗 ; 𝑗 .𝑖 = -𝑘 and 𝑘. 𝑗 = -1. We first represent the
normalized image 𝐼 as a pure Quaternion matrix (𝑟=0) by encoding
each pixel as a Versor (i.e. a unit norm quaternion) with the color
channels (𝑅𝐺𝐵) encoded as the three quaternion vectors (𝑅 ↦→ 𝑖 ,
𝐺 ↦→ 𝑗 , 𝐵 ↦→ 𝑘). The advantage of optimizing in quaternion space

compared to concatenated 𝑅𝐺𝐵 matrices is that the quaternion PCP
preserves both spectral and inter-channel phase information unlike
Real (no phase) and Complex (spectral phase) variants [16, 20]. Thus
the color channel information is better represented in this manner
leading to improved factorization (empirically verified in section 4).

Iterative Factorization: In order to generate more than two
simulated images we propose to apply the RPCA splitting itera-
tively on the factorized low-rank component by gradually reducing
the sparsity constraint 𝜆 from 𝜆𝑚𝑎𝑥 −→ 1. This can be understood
as progressive subtraction of the specularity content from the fac-
torized components till the total signal energy limits to zero. To
achieve this, we gradually relax 𝑘 in Equation 1.

𝐼 = 𝐸1 +𝐴1 = 𝐸1 + (𝐸2 +𝐴2) = 𝐸1 +𝐸2 +𝐸3 +𝐴3 = ... =
∑𝐾
𝑖 𝐸𝑖 . (2)

Figure 3 shows an example of such factors and their successive
differences (i.e. 𝐸𝑖+1 − 𝐸𝑖 ) for visualization. Note how the initial
factors contain predominantly scene highlights and light sources,
followed by differently lit regions and finally shadows (loosely rep-
resenting: sharp highlights −→ soft highlights −→ direct −→ indirect
−→ ... −→ soft shadows −→ dark shadows etc.). One can also look at
these factors, especially the successive differences, as illumination
consistent superpixel regions which are similar in their shading
content instead of color. The scene hence gets factorized into multi-
ple illumination consistent layers which can be globally processed
with simple enhancement operations.



Quaternion Factorized Simulated Exposure Fusion ICVGIP’22, December 8–10, 2022, Gandhinagar, India

3.2 Stack Simulation
As the image layers obtained from the previous step posses similar
optical characteristics, we can directly edit them with simple global
image manipulation operators without introducing significant il-
lumination artifacts. Based upon this idea, we simulate a virtual
exposure stack from a single image for the purpose of low-light im-
age enhancement task. We first factorize the input low-light image
into 𝐾 factors (𝐸𝑖 ) by following the procedure in subsection 3.1. We
post-process thus obtained layers by following three steps:
(i) Layer grouping i.e. based on layer signal energy merge with
the next layer if lower than a set threshold (𝜏 = 1%). This increases
efficiency by simplifying the stack.
(ii) Outliers removal i.e. clip the pixels above and below certain
percentiles (99.9 and 0.1) to the corresponding cutoff values. This
controls extremely high and low valued noisy pixels.
(iii) Luminance normalization i.e. rescale the luminance of lay-
ers ∈ [0,𝑚𝑘 ] by normalizing the value in HSV color space. Here
𝑚𝑘 is the signal energy in each factor which is estimated as the
sum of all pixel values in that layer divided by sum of all𝑚𝑘s i.e.
𝑚𝑘 = (Σ𝑥𝐸𝑘 )/(Σ𝑘Σ𝑥𝐸𝑘 ). This enhances contrast while adhering
to the original order of luminosity values of image regions.

After post-processing, we simulate our virtual exposure stack
(𝑆𝑖 ) by linearly combining the layers with 𝐼 progressively:

𝑆𝑖+1 = (1 − 𝛼)𝑆𝑖 + 𝛼𝐸𝑖 , where 𝑖 ∈ [0, 𝐾] and 𝑆0 = 𝐼 . (3)

Linear combination in Equation 3 helps in the gradual introduction
of information from the successive layers into the low-lit image.
This avoids sudden illumination jumps which might generate un-
naturally lit images. Furthermore, it simulates the effect of slowly
increasing the exposure time (or reducing shutter speed), leading
to progressively brighter images with varying exposure values as
shown in Figure 3.

3.3 Exposure Fusion
Fundamental task in exposure fusion is to assess the amount of
information at each pixel in the stack and use it to merge all the
images to render an enhanced image. It is a well understood problem
with multiple solutions proposed in the current literature [11]. We
build our framework by adapting multiple existing exposure fusion
strategies which we discuss below:

Direct Fusion: As a simple baseline we process our last sim-
ulated image which contains the information from all the layers.
Similar to subsection 3.2, we first percentile clip the outliers and
then normalize the luminance. In order to remove the image noise
arising from the sensor errors in the low-lit regions and rescaled
in the dark layers, we use Block-Matching and 3D collaborative
filtering (BM3D). BM3D is a non-local transform based denoising
method which first spatially (2D) and then spectrally (1D) trans-
forms similar image patches which are then denoised in this 3D
domain via shrinkage [39]. After denoising, we rescale the image
and use it as our directly fused enhanced result 𝐼𝐷 .

Laplacian Pyramid Fusion: In their seminal work, Mertens
et al. [38] introduced the concept of exposure fusion via a Laplacian
pyramids from a bunch of Low Dynamic Range (LDR) to create a
High Dynamic Range (HDR) output. They first estimate the image

quality at each pixel using three metrics: contrast𝐶𝑘 (𝑥), saturation
𝑆𝑘 (𝑥) and well-exposedness𝑊𝑘 (𝑥) which respectively measure
the spatial gradient magnitude, pixel color standard-deviation and
Gaussian curve distance from the mid-tone value of 0.5. For each
image a weight matrix is constructed by simply multiplying the
three quality maps as𝑤𝑘 (𝑥) = 𝐶𝑘 (𝑥)𝜆𝑐 .𝑆𝑘 (𝑥)𝜆𝑠 .𝑊𝑘 (𝑥)𝜆𝑤 with 𝜆 𝑗 s
tunable hyperparameters. The input images are then fused by merg-
ing their Laplacian pyramids weighed by the Gaussian pyramids of
their respective normalized weights [12]. We ignore the contrast
term as it is already handled by the Luminance normalization step
during simulation in subsection 3.2 and empirically fix the hyper-
parameters values at 𝜆𝑐 = 0, 𝜆𝑠 = 1 and 𝜆𝑤 = 2. We denoise and
rescale and denote the hence obtained enhanced result as 𝐼𝐿 .

Generalized RandomWalk Fusion: The third strategy that we
experiment with is the Generalized RandomWalk Fusionmethod by
Shen et al. [50] who fuse multiple LDR images to construct a HDR
image which is tone mapped to the enhanced result. They perform
a global optimization using local contrast and color smoothness
as two quality measures. They setup a Dirichlet problem [18] per
stack image and solve them via global Generalized Random Walk
algorithm [23]. They estimate dense probability maps representing
significance of each pixel in the stack towards generating a com-
bined enhanced image. We apply their algorithm on our simulated
exposure stack and label our enhanced result as 𝐼𝐺 , post denoising
and rescaling.

4 EXPERIMENTS AND RESULTS
Implementation Details: We implement our framework us-

ing the Matlab Quaternion Toolbox [46]. Codes for various fusion
strategies and BM3D denoising were adapted from their respective
official releases [38, 39, 50]. We show the utility of our framework
by comparing with the previous state-of-the-art single image low-
light enhancement methods. We restrict ourselves to the solutions
which directly work on 𝑠𝑅𝐺𝐵 images and do not require 𝑅𝐴𝑊 in-
puts. Specifically we compare with RetinexNet by Wei et al. [56],
DCENet by Guo et al. [25], LPNet by Afifi et al. [2] and UNIE by Jin
et al. [32]. RetinexNet and LPNet are trained via direct supervision
on LOL dataset [56] and simulated exposure stack from Adobe5k
dataset [13] respectively. Whereas, DCENet and UNIE follow zero-
shot and unpaired unsupervised learning adapted on SICE [14] and
LOL [56] datasets respectively. We use the code and pretrained
weights as shared by the authors’ and reference the quantitative
scores as reported in the literature.

Quantitative Results: We show both quantitative (PSNR-SSIM
scores 𝑄𝑖 in Table 1) and qualitative results (Figure 6) on four
datasets (D𝑖 ) comprising of varying number of test images: LOLv1
testset (15) [56], LOLv2 testset (100) [58], SICE Part 2 testset (767)
[14] as described by Guo et al. [25] and Adobe5k testset (5905
images) [2] . Adobe5k contains both over and under exposed images
and provides 5 expert ground truth annotations. Afifi et al. [2]
report both separate and combined results on these two categories
for all the annotations. We follow the same procedure and show
our overexposed, underexposed and combined scores averaged
over all the expert annotations (for individual expert ground truth
evaluations refer to the supplementary material).
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Testset→ LOLv1 test [56] LOLv2 test [58] SICE Part 2 [14] Adobe5k [2] (3543 + 2362 = 5905) Average Generaliz
Methods Trainset ↓ (15) (100) (767) Overexp. Underexp. Complete (𝑆𝑎 ) -ability (𝑆𝑔)

RetinexNet[56] LOLv1 train 16.77 - 0.46 15.47 - 0.56 15.99 - 0.53 11.06 - 0.60 12.49 - 0.62 11.63 - 0.61 12.19 - 0.60 12.18 - 0.60
DCENet [25] SICE Part 1 14.86 - 0.59 20.54 - 0.78 16.57 - 0.59 11.02 - 0.52 14.96 - 0.59 12.60 - 0.55 13.17 - 0.56 12.74 - 0.55
LPNet [2] raw Adobe5k 15.3 - 0.56 16.38 - 0.53 14.55 - 0.50 19.35 - 0.74 19.69 - 0.74 19.48 - 0.74 18.87 - 0.71 14.77 - 0.51
UNIE [32] LOLv1 train 21.52 - 0.76 25.53 - 0.88 13.72 - 0.46 16.93 - 0.66 15.65 - 0.60 16.41 - 0.64 16.26 - 0.62 16.42 - 0.62

𝐼𝐷 (Direct) _ 20.39 - 0.77 19.12 - 0.67 16.82 - 0.62 17.90 - 0.71 19.87 - 0.72 18.69 - 0.71 18.49 - 0.70 18.49 - 0.70
𝐼𝐿 (Laplacian) _ 19.28 - 0.75 18.16 - 0.67 17.75 - 0.60 15.60 - 0.65 17.94 - 0.69 16.78 - 0.67 16.92 - 0.66 16.92 - 0.66
𝐼𝐺 (GRWF ) _ 17.72 - 0.70 19.01 - 0.69 15.64 - 0.56 18.71 - 0.71 19.34 - 0.70 18.96 - 0.71 18.58 - 0.69 18.58 - 0.69

Table 1: Quantitative comparison: We evaluate our simulated exposure stack generation scheme over 5 datasets using results from our 3
exposure fusion strategies (𝐼𝐷 , 𝐼𝐿, 𝐼𝐺 ). Each tuple represents PSNR-SSIM scores (higher is better). 𝑆𝑎 is average score weighted by testset size
and 𝑆𝑔 is method’s Generalizability score computed as weighted average leaving out the testset corresponding to its supervision dataset. Best
score is in boldfaced and second best is underlined.

Figure 4: Stack Simulation: This figure shows Simulated Exposure Stack and the underlying quaternion RPCA decomposed factors for two
types of scenes: outdoor naturally lit scene with single light source (top) and indoors artificially lit room with multiple illuminants (bottom).

For overall performance, we report average scores (𝑆𝑎) weighted
by testset cardinality i.e. Σ𝑖 ( |D𝑖 |𝑄𝑖 )/Σ𝑖 |D𝑖 | thus assigning equal
importance to all test images across datasets. Furthermore in order
to gauge the cross-dataset generalizability of learning based meth-
ods, we also calculate the average scores by leaving out the test
images of the dataset onwhich the respectivemodel was trained (e.g.
leaving out LOLv1 testset for RetinexNet and computing weighted
mean over the rest). We report this metric as the Generalizabil-
ity Index (𝑆𝑔) of the method and list them in the last column. As
our method is a non-data driven optimization algorithm, last two
columns are same in our case i.e. 𝑆𝑎 = 𝑆𝑔 . We provide evaluation
scores for all three of our fusion strategies in the three last rows
(𝐼𝐷 , 𝐼𝐿 and 𝐼𝐺 ).

As can be observed from Table 1, our results are frequently
ranked best or second best on multiple datasets even without hav-
ing learned any data-driven prior via training. As expected, all
four learning based methods perform well on the datasets which
are similar to their respective training sets but suffer significant
performance degradation when dataset domain shifts. The effect
pronounced in the case of smaller models like RetinexNet and
DCENet. (Note that datasets LOLv1 and LOLv2 are similar than
the rest). In overall performance 𝑆𝑎 our method ranks second just
behind LPNet [2]. Note that LPNet was trained on simulated im-
ages from the raw data in Adobe5k. Hence their performance on
the corresponding testset is also higher which contributes a high
weight to the overall score 𝑆𝑎 . In order to ameliorate this, we use
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Figure 5: Results: Our low light image enhancement results on three scenes using our three exposure fusion strategies (subsection 3.3).
Clockwise from top left: 𝐼 ,𝐼𝐷 , 𝐼𝐿 and 𝐼𝐺 respectively. Test images taken from LOL dataset [56, 58].

Input DCENet [25] LPNet [2] UNIE [32] Our results (𝐼𝐿) Ground Truth

Figure 6: Qualitative Comparison: Low light enhancement results comparison between DCENet [25], LPNet [2], UNIE [32] and our
method 𝐼𝐿 . DCENet [25] leads to desaturated colors while LPNet [2] and UNIE [32] fail to properly illuminate some regions. Our method
achieves good enhancement without significant color degradation.

the Generalizability Index score 𝑆𝑔 by leaving out significance of
respective training dataset test images. Under this metric all of our
strategies perform better than the current state-of-the-art solutions
indicating our wider generalizability and utility.

Qualitative Results: The first step of our method i.e. Quater-
nion RPCA factorization, is not limited to dimly lit scenes and can
be applied on a variety of images as shown in Figure 4. We show
our resultant simulated exposure stack from a single under-, well-
and over- exposed image input. in Figure 5 we show three sample
enhancement results for a low light image using all three of our
strategies (𝐼𝐷 , 𝐼𝐿 and 𝐼𝐺 ). Out of these three, 𝐼𝐷 is the fastest but
does not integrate contrast from the initial layers quite well. On the
other hand, 𝐼𝐺 is the slowest but has better contrast. 𝐼𝐿 though has
relatively lesser quantitative score but strikes a balance between
both the scenarios. any of these strategies can be used for the task
based on user preferences. We also gauge the perceptual quality of
our results (𝐼𝐿) by comparing against previous SOTA in Figure 6.

It can be observed that DCENet [25] brightens the image but dulls
the color information and the resultant images are grainy. LPNet
[2] leaves some dark shadows and over saturates colors in some
regions. UNIE [32] results have good color but are blurred and
dark. They are also inconsistent depending on the scene type. Our
method achieves balanced enhanced results with good contrast and
are reported in the last column.

Ablation Analysis: We validate our design choices by perform-
ing two different ablation analyses on LOLv1 testset images. First
we compare four different variants of our system. Variant 𝑣1 is per-
formed by swapping quaternion RPCA with real RPCA on the color
channels concatenated representation of the image. Variant 𝑣2 is
designed to signify the impact of denoising and is formed by skip-
ping the CMB3D denoising step in the original pipeline. 𝑣3 is very
similar to 𝑣4 only with luminance normalization step replaced with
normal range normalization whereas 𝑣4 represents our complete
system. As seen in Table 2 and Figure 7, 𝑣1 fails to capture the color
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Figure 7: Ablation: Illustrative low light enhancement results
for our four variants 𝑣1, 𝑣2 (top) and 𝑣3, 𝑣4 (bottom) in two rows
respectively. 𝑣1 optimizes in real space and hence does poor color
preservation. Without denoising, 𝑣2 contains salt-pepper noise.
Note slight over smoothing of the text in the notebook and dark
corners in 𝑣3 results compared to our final design choices in 𝑣4.
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Figure 8: Ablation on 𝑘 parameter: The graph above shows the
effect of different number of simulated images on the mean PSNR
of the three strategies. After swift increase initially, performance
plateaus after 𝑘 = 10 with a slight degradation towards the end. We
choose the middle plateau value of 𝑘 = 15 for our experiments.

information properly, whereas 𝑣2 contains amplified dark channel
noise prevalent in the low-light images. 𝑣3 performs quite well
quantitatively but does over smoothing in high frequency parts in
certain scenes. Overall 𝑣4 presents a balanced approach with good
numerical and perceptual accuracy.

Our second ablation experiment is done to analyze the effect of
number of simulated images 𝐾 . We gradually increase the value
of 𝐾 (3, 5, 7, ...29) and observe the mean PSNR scores computed on
our ablation set. As can be observed from Figure 8, the scores after
increasing drastically for first few values, plateaus in the range
𝐾 = [10-15]. This happens because the fewer number of factors do
not represent illumination consist regions in the image properly
and hence fail to properly enhance the poorly lit pixel values. On
the other hand higher values of 𝐾 lead to several dimly lit factors
which contain sensor noise, thus degrading the quality of stack
input in the exposure fusion step and thereby reducing the quality
of generated results. To enable better user control over the scene,
we fix 𝐾 = 15 in all our experiments.

Variants real RPCA w/o Denoise w/o LNorm. Full
−→ 𝑣1 𝑣2 𝑣3 𝑣4

𝐼𝐷 12.83 - 0.5 18.35 - 0.6 20.86 - 0.75 20.39 - 0.77
𝐼𝐿 14.54 - 0.56 18.14 - 0.59 20.11 - 0.76 19.28 - 0.75
𝐼𝐺 12.66 - 0.48 15.83 - 0.53 17.48 - 0.69 17.72 - 0.70

Table 2: Ablation using system variants: We show PSNR-SSIM
(↑) scores on 15 LOLv1 [56] testset images for our four system
variants i.e. using real RPCA (𝑣1), without denoising (𝑣2), without
luminance normalization (𝑣3) and our complete version (𝑣4). The
performance gradually improves for each step empirically validat-
ing our design choices. Note that although we achieve higher scores
with 𝑣3 but it leads to oversmoothing of edges especially in high
frequency regions (see Figure 7).

5 CONCLUSION AND FUTURE DIRECTIONS
To summarize, in this work we have presented a novel exposure
stack simulation method and applied it to the task of low-light
image enhancement. We extend the Retinex theory by proposing a
Robust Retinex Decomposition formulation. To this end we present
a new way of image factorization by first representing the image
pixels in the quaternion space as a pure quaternion vector and
then apply Robust Principal Component Analysis to obtain sparse
factors representing the specular information in the image. We
propose a scheme to simulate a virtual exposure stack from a single
image by iterative factorization and adapt existing exposure fu-
sion strategies to generate an enhanced well-lit image. Our results
show good qualitative and quantitative performance on multiple
datasets, especially exhibiting marked generalization performance
even when compared with the contemporary state-of-the-art deep
learning based solutions for this task.

In the end, we would like to point out the our proposed factor-
ization technique can assist several related image based rendering
problems beyond the low light image enhancement task like se-
lective relighting, shadow removal, white balancing, object com-
positing, image harmonization etc. Furthermore, we can extend
our method by assembling an end-to-end deep model for the three
sub-modules i.e. factorization, simulation and fusion. In future we
would like to pursue these directions.
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