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ABSTRACT

Evaluation of ill-posed problems like Intrinsic Image Decomposi-
tion (IID) is challenging. IID involves decomposing an image into
its constituent illumination-invariant Reflectance (R) and albedo-
invariant Shading (S) components. Contemporary IID methods use
Deep Learning models and require large datasets for training. The
evaluation of IID is carried out on either synthetic Ground Truth
images or sparsely annotated natural images. A scene can be split
into reflectance and shading in multiple, valid ways. Comparison
with one specific decomposition in the ground-truth images used
by current IID evaluation metrics like LMSE, MSE, DSSIM, WHDR,
SAW AP%, etc., is inadequate. Measuring R-S disentanglement is
a better way to evaluate the quality of IID. Inspired by ML inter-
pretability methods, we propose Concept Sensitivity Metrics (CSM)
that directly measure disentanglement using sensitivity to relevant
concepts. Activation vectors for albedo invariance and illumination
invariance concepts are used for the IID problem. We evaluate and
interpret three recent IID methods on our synthetic benchmark of
controlled albedo and illumination invariance sets. We also compare
our disentanglement score with existing IID evaluation metrics on
both natural and synthetic scenes and report our observations. Our
code and data are publicly available for reproducibility !.
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Figure 1: Evaluation-via-interpretation: Given a pre-trained
IID network, existing evaluation techniques rely on comparison
with ground truth or performance in a downstream application.
We propose a novel evaluation-via-interpretation strategy based
on learned Concept Activation Vectors (CAV) [23]. We estimate
concept sensitivity scores and evaluate IID performance by mea-
suring the quality of albedo-illumination disentanglement via our
proposed Concept Sensitivity Metric (CSM).

1 INTRODUCTION

Image-Based Inverse-Rendering (IBIR) problems like image styliza-
tion, image harmonization, illumination estimation, palette extrac-
tion, etc., are often under-constrained and ill-posed in nature. They
are under-constrained as we need to estimate more output parame-
ters than available inputs, e.g. style-content decomposition from
a single image for stylization. These problems are also frequently
ill-posed due to the underlying optical model approximations and
assumptions, e.g. diffuse surfaces, monochromatic illumination,
point light source, etc. As a result, performance evaluation of their
solutions becomes a challenging task. The issue is exacerbated
due to the lack of a proper ground truth dataset and evaluation
metric. To address this issue, we propose a novel evaluation by in-
terpretation technique in this paper thereby introducing a Concept
Sensitivity Metric (CSM). We focus on one such problem in the
paper. i.e., Intrinsic Image Decomposition (IID) [27].

IID is an IBIR task that involves decomposing a given image into
its constituent illumination-invariant Reflectance (R) and albedo-
invariant Shading (S) components. The decomposition finds direct
use in many applications, such as shadow removal [26], image
colorization [34], material manipulation [6], relighting [13], and
retexturing [6]. Current IID methods assume a simple Lambertian
reflectance model on diffuse surfaces:

I=ROS, (1

where © denotes element-wise multiplication. Due to the under-
constrained nature, existing IID methods either depend on hand-
crafted [5, 30, 46] or deep learned [12, 31, 32, 35] priors.

!https://github.com/avani17101/CSM
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Performance evaluation of IID is carried out on a small number
of natural images like MIT Intrinsics [20], sparse human annota-
tion datasets like Intrinsic Images in the Wild (TIW) [5], Shading
Annotation in the Wild (SAW) [25], etc., or synthetic datasets like
Sintel [8], As-Realistic-As-Possible (ARAP) [7], etc. For densely
annotated GT images, evaluation is carried using dense per pixel
error estimation or using quality score involving metrics like Peak
Signal-to-Noise Ratio (PSNR), Local Mean Square Error (LMSE),
Difference in Structural Similarity Index (DSSIM), etc. For sparsely
annotated GT datasets, IID-specific metrics like Weighted Human
Disagreement Ratio (WHDR) [5] and Average Precision (AP%) of
classified shading pixel regions [25] have been proposed. Yet an-
other way to evaluate IID solutions is via the effectiveness of the
decomposed components in a downstream application. Bonneel
et al. [7] propose hardcoded application scenarios like logo removal,
shadow removal, texture replacement, and wrinkles attenuation on
a fixed set of hand-picked 21 images to benchmark IID solutions.
These evaluation strategies either require dense GT annotations
which are available only for synthetic scenes [7, 8] (with exception
of a few single object images from Grosse et al. [20]) or are dataset
specific with sparse human annotations [5] [25]. Since multiple R
and S pairs can result in the same image, even the “ground truth”
is only one possible solution and measures on that is inadequate to
evaluate the method.

To address these issues, we propose a new evaluation strategy
for ill-posed problems like IID by measuring the quality of disen-
tanglement between the decomposed components R and S. We use
the core IID concepts of illumination-invariance of R and albedo-
invariance of S to measure disentanglement, without specifically
relying on synthetic images or relative quality metrics computed on
fixed sparsely annotated datasets. We choose an ML interpretability
technique based upon Testing with Concept Activation Vectors
(TCAV) [23] for this. Originally introduced for classifiers, TCAV is a
post-hoc Concept-based Model Extraction (CME) [21] method that
interprets a Neural Network using human understandable concepts.
Specifically, TCAV quantifies the importance of a user-defined con-
cept in the model’s prediction by extracting activation vectors from
a provided concept set. For example, for a zebra classifier one may
be interested in interpreting concepts like ‘striped-ness’ vs. ‘dotted-
ness’, which are defined by learning Concept Activation Vectors w.r.t.
the model from user provided sets with striped and dotted textures
respectively. We use as concepts two core characteristics derived
from the very definition of IID, i.e., illumination-invariance of R and
albedo-invariance of S. We assess disentanglement between them
by measuring the model’s sensitivity to these concepts in the form
of Concept Sensitivity Metrics (CSM) (Figure 1). The CSM provides
a generic framework applicable to problems other than IID using
concepts relevant to them. To summarise, the main contributions
our work are:

e A novel method for using ML interpretability algorithms like
TCAV to measure disentanglement.

o A novel IID performance evaluation metric: Concept Sensitivity
Metric (CSM) and benchmarked results on three state-of-the-art
IID solutions.

o A new configurable dataset of images and corresponding genera-
tion scripts with controlled illumination and albedo variation.

Avani Gupta, Saurabh Saini and P ) Narayanan

2 RELATED WORK

2.1 Intrinsic Image Decomposition

As the core idea behind our proposed approach involves applying
an ML interpretablity technique for IID evaluation, we discuss the
relevant literature under the two sub-sections mentioned below:

IID Methods: 1ID as modeled in Equation 1 was first proposed
by Land and McCann [29]. Earlier IID solutions were mostly un-
supervised optimization based approaches constrained by strong
assumptions and specific auxiliary inputs like time-lapse video [32],
multi-view images [13], IID using stereo images [28], IID on RGBD
data [3], focal stacks [42], etc. Single image IID methods depend
upon complex cost functions and optimization algorithms like IID
by chromatic clustering [16], convex energy minimization [18], hi-
erarchical priors [40, 41], etc. With the advent of Deep Learning,
various supervised, semi-supervised and unsupervised Neural Net-
work based solutions have been proposed in the literature. Initially,
Bell et al. [5] and Zhou et al. [50] proposed a hybrid DL and opti-
mization based framework for IID. Narihira et al. [37] proposed a
direct R and S regression framework trained on synthetic Sintel
dataset [8]. Li and Brown [30] introduced a relative loss function
for reflectance estimation. Li and Snavely [32] learned an unsu-
pervised IID model using time-lapse videos and consistency loss.
Finally, Li and Snavely [31] and Fan et al. [14] trained multiple
sequential modules supervised by hybrid synthetic, sparse, and
dense datasets with appropriately designed loss functions. A fully
unsupervised DL approach has been proposed [35], which poses
IID as a style-transfer problem. PIE-Net [12] has a hybrid-CNN
approach for addressing shading-reflectance leakages in strong illu-
mination conditions whereas Baslamisli et al. [4] use photometric
invariance and some other physics based priors in encoder-decoder
architecture.

As earlier optimization based approaches are interpretable by
design, we focus on recent state-of-the-art DL based IID models.
Specifically, we focus on 3 IID solutions:

- Intrinsic Images by Watching the World (ITWW) [32] trained in
a partially-supervised manner on their self-introduced Bigtime
dataset consisting of time-lapse videos of natural indoor and
outdoor scenes.

- CGlIntrinsics (CGIID) [31] which does supervised training on
their new synthetic dataset containing physically based render-
ings with GT R and S, as well as natural scenes from IIW [5] and
SAW [25] datasets.

- Unsupervised Single Image Intrinsic Image Decomposition (USI3D)
[35] which first disentangles content from style features, then
utilizes adversarial learning to separately learn R and S style do-
mains and performs content preserving image translation with
consistency losses for IID in an unsupervised training regime.

Evaluation Strategies: Since there is lack of dense real world
GT annotations for R and S, all the above models are evaluated on
synthetic images (ARAP [7], Sintel [8]), small single object scenes
(MIT Intrinsics [20]) or sparse manual annotations (ITW [5], SAW
[25]). Synthetic GT based evaluation is affected by synthetic-natural
domain shift, whereas single object images do not capture the com-
plexity of everyday natural scenes. Sparse manually annotated GT
from IIW and SAW either provide only relative assessments or
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Our proposed evaluation by interpretation method
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Figure 2: Disentanglement Quality Assessment: Given the concept sets illumination invariance A, and albedo invariance A; along with
their negative counterpart rand, we learn and store Concept Activation Vectors (CAVs) (vi , vﬁ_) for the pretrained IID network by classifying

the respective branch’s concept activations (fs(), fr()) (where fy means network output for branch Y) of the positive and negative concept
set images. During inference, given an input image I, we compute its dense pixel loss by comparing predicted (R, S) with corresponding

ground truth (R, S) values. Based on the loss gradient’s alignment along the learned CAV (v

S

R\ 1 . S
A0 Ai) directions, concept sensitivity values are

estimated (Ra,, Ra;, Sa,» Sa;) and combined to give CSMg and CSMg scores which measure IID disentanglement.

use classification accuracies on fixed shading categories. Addition-
ally, Bonneel et al. [6] acknowledge the issue of IID evaluation
and propose to evaluate IID quality by estimating the performance
in downstream image editing applications (logo removal, shadow
removal, texture replacement and wrinkles attenuation) using the
decomposed R and S components. None of these IID evaluation
strategies specifically capture disentanglement quality of the decom-
posed R and S, and implicitly assume that the small set of curated
GT annotations/cases represents all the possible test scenarios.

Metrics: On densely annotated synthetic GT images, IID qual-
ity is measured using pixel-to-pixel comparisons and metrics like
Local Mean Square Error (LMSE), Mean Squared Error (MSE), and
Difference in Structural Similarity Index (DSSIM). These metrics
are not robust to the ambiguous nature of the IID problem (I =
RoGS=AR0O Ai ¥\ € R*). For sparse human annotated GTs like
IIW and SAW, Weighted Human Disagreement Ratio [5] (WHDR)
measures the percentage of disagreement between human assess-
ment and model prediction weighted by the confidence of each
annotation. The SAW AP% [25] is calculated based upon average
precision on varying recall percentages over classification of pixels
into smooth vs non-smooth shading regions. Both of these metrics
only assess sparse set of pixels and ignore specific cases like multi-
ple shadows, colored highlights, material transmissivity, etc. Also,
they are specific to dataset which is comprised of mostly indoor
scenes. Current limitations of IID metrics motivate the search for a
more comprehensive and fundamental evaluation strategy which
we attempt to address by our proposed approach in this paper.

2.2 Neural Network Interpretation

The goal of Neural Network Interpretation research is to go beyond
the mere black box usage or accuracy based interpretation of Deep

Learning architectures and develop an understanding of the internal
workings of the learned model. Several techniques have been used
for this purpose like activation maps visualization [45], saliency
estimation [43], model simplification [47][39], model perturbation
[15], adversarial exemplar analysis [19], etc. For more details on ex-
isting state of the art interpretability methods refer Linardatos et al.
[33]. We focus on a specific category of post-hoc model interpreta-
tion techniques based on analysis of concepts drawing motivation
from [22] which compare disentanglement approaches with concept
based approaches. Zaidi et al. [48] on the other hand review various
mathematical disentanglement metrics. Kim et al. [23] define model
interpretation as a function g : E,, — Ej,, where E, represents the
vector space of the model state and Ej, represents the space of
high-level human-understandable concepts. Concepts space, Ep, is
defined using a set of user provided samples that exemplify the
desired concept well. Kim et al. [23] measure sensitivity towards
Concept Activation Vectors (CAV) as an interpretation function (g)
where CAV for a concept is defined as a vector in the direction
of activations for the provided concept set examples. Given a few
positive and negative pairs of concepts and a target class, it assigns
a score to how much significance a concept has in the class predic-
tion. While TCAV requires the concept set given by the user, ACE
[17] automates the process of concept discovery by using super-
pixel segmentation and clustering in the activation space to get
concept definitions directly from class images. Other concept based
approaches like [2, 21, 24, 44] learn concepts to predict class and
use them for explaining the model’s predictions.

Although TCAV was initially proposed only for classification
problems but in this work we extend it for IID like image generation
tasks. We define two IID specific CAVs (R illumination-invariance
and S albedo-invariance). These concepts are fundamental to the
mathematically ideal modeling of the two decomposed components
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and hence can be used to quantify the model’s adherence to the
very definition of IID. We create two synthetic concept sets for
these concepts and benchmark three pre-trained IID models on our
proposed Concept Sensitivity Metric (CSM) which measures the
sensitivity of model towards the estimated CAVs.

3 APPROACH

In this section, we first provide a quick primer on the background of
Testing with CAV [23], followed by our definition of IID concept sets
for R illumination-invariance and S albedo-invariance and proposed
IID evaluation strategy using our novel Concept Sensitivity Metric.

3.1 TCAV Primer

Testing with Concept Activation Vectors (TCAV) [23] is a Neu-
ral Network interpretation method that calculates a pre-trained
model’s sensitivity towards a user-defined concept by training a
Concept Activation Vector (CAV) in the feature space and analysing
the layers’ activations direction w.r.t. the learned CAV. A concept
can be any abstract high-level human-understandable category (e.g.,
colors vs. non-color, striped vs. dotted textures, model-woman vs.
stripes, etc.) and is defined in terms of a set of images.

For input image x from the testset, layer I’s activation is given
by fi(x). Given a concept of interest C, a set of images of that
concept are taken as positive samples vs. a set of random images are
taken as negative concept set (C’). A binary linear classifier (linear
regression or SVM) is used to distinguish between [I’s activations
for C and C’ (i.e., between sets fij(x) : x € Cand fij(y) : y € C').
The vector representing the classifier hyperplane is stored as the
CAV, Ulc. Model’s concept sensitivity Sc; € [0, 1] for a given class
sample x is estimated by calculating the alignment between the
learned CAV ulc and the gradient VL; (fj(x)) of loss with respect
to activation for that layer (computed via back-propagation) as:

dL(x)
9%qp '

Sca(x) = VL (fi(x)) -0, where VI (fi(x)) = @
TCAV has been used to analyze classifiers using a Cross-entropy
(CE) loss between the predicted logit and GT class label. We use
TCAV to evaluate the disentanglement of image decomposition
by introducing a pixel-wise loss instead of CE. For pixel location
(a,b), L is calculated as MSE between the predicted ﬁ S and their
respective GT values. Finally, the complete TCAV sensitivity score
for concept C is computed as the fraction of inputs (x’s) in the
complete concept set X, which were positively aligned with vlc.

|{x €X:5¢0;(x) < 0}|
X1
Note that the sign is negative here because gradient is taken with

respect to loss instead of logit values. Thus when C has a positive
influence, the loss is minimised?!.

TCAV¢; =

®)

3.2 IID: Evaluation by Interpretation

IID Concepts: For IID evaluation-via-interpretation, we define
two concepts: albedo-invariance (Cp,) and illumination-invariance
(Ca,)- For definition of associated concept sets (A; and Ag), we
render synthetic images of objects by varying one concept while

!https://github.com/tensorflow/tcav
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Figure 3: Concept sets: Left grid of images shows four samples
from our A, concept set with varying textures and base colors.

Image on the right illustrates light source variation setting (+22 in
either direction) for rendering A; concept set images.

fixing the other. We use random textures, albedo maps and different
illumination settings for this. For negative concept set, we randomly
select images from a large dataset (unrelated to IID).

R and S Sensitivity: By IID definition, in an ideal case A, should
only affect R and A; should just affect $. In other words, the sensitiv-
ity Ra,, of R towards concept Ca, must be high and the sensitivity
Rp, towards concept C, must be low. Conversely, for 5, the sensi-
tivity Sa, towards concept Cp, must be low and the sensitivity S,
towards concept Ca, must be high. In the ideal case of complete
R-S disentanglement, Ra_, Sa; should be 1 and Ra,, Sa,, should be
0. Due to several inherent assumptions in the IID definition (diffuse
surfaces, linear optics, etc.), total disentanglement is impossible and
a measure of disentanglement will be useful.

Concept Sensitivity Metric (CSM). We evaluate the model’s
disentanglement quality by combining the above sensitivity scores
to gauge the model’s performance in the two experiments separately
to give Concept Sensitivity Metric (CSM) scores. CSM scores give a
quantitative measure to gauge the quality of R vs. $ disentanglement.
We introduce two CSM scores: CSMg which measures $ albedo
invariance and CSMg which measures R illumination invariance:

Ra SA;
CSMs = —= and CSMg=—. 4)
SA, Rp,;
Higher value of CSMg indicates less leakage of albedo information
in S. Similarly, higher value of CSMg indicates less illumination

leakage in R. We verify the same experimentally in section 5.

4 EXPERIMENTAL SETUP
4.1 Datasets

Concept Sets: For the two IID concepts, the respective concept
sets (Ag and A;) are rendered in Blender [11] in a controlled en-
vironment. We generate two types of scenes: simple scenes with
a single object and complex scenes with multiple (3) objects. We
setup the scene by randomly choosing from a set of frequently
used standard 3D meshes? and placing them on a white table-top.
We place a point light source of white color, 1000W power, 0.5m
radius with fixed temperature T € {2500, 4500, 6500}. Specifically,
for A4, we render scenes with fixed viewpoint and illumination but
randomly vary the base color and surface texture. For A;, we vary
illumination by rotating the light source every 2° in +45 left and
right directions as shown in Figure 3 but keep the camera viewpoint

Zhttps://github.com/alecjacobson/common-3d-test-models
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and base color/surface texture constant (thus getting 44 images:
22 in the left and 22 in right direction). For defining the negative
concept set C’, we take random images from Adobe-5k-dataset [9].

We also compare the CAVs learned from our synthetically ren-
dered concept sets against available natural scene datasets. For A,
concept set, we found no suitable large enough dataset with natu-
ral albedo variations, so we report on synthetic concept set only.
For A; we use two publicly available datasets which have natural
illumination changes: (i) Multi-lllumination Images in the Wild
dataset (MIW) [36]: test split which consists of 30 scenes under 25
different illuminations. (ii) Photometric Stereo dataset (PS) [1] con-
sists of 3 objects (apple, gourd1, gourd2) under several illumination
settings in all directions (approximately 100 per object). Though
MIT Intrinsics dataset [20] also has scenes in varying illuminations
(11), it cannot be used as concept set because at least 20 images are
needed per concept for a stable CAV estimation as recommended
by Kim et al. [23].

Testsets: We take ARAP[7] dataset images as our input x for
IID networks. ARAP contains realistic synthetic renderings of both
indoor and outdoor scenes. We remove the single object scenes
(’Katie’, ‘redhead’, ’skin’, ’strawberries’, ’toad’, ‘revolution’) to main-
tain inter-scene consistency taking the remaining complex scenes
to get a total of 42 scenes which have 3-4 varying illuminations.

4.2 Implementation details

We use our PyTorch [38] implementation of TCAV. We use the pre-
trained models and the inference codes for TWW/[32], USI3D[35],
and CGIID[31] from their official repositories and use their respec-
tive hyper-parameter settings. Our sensitivity computation requires
only activation values of the pre-trained model and does not require
full training. The hardware requirement of our framework depends
on the model being analysed for CAV estimation. We tested our
framework on 2 Nvidia GTX1080Ti GPUs, which were required by
the largest model we analyzed (USI3D).

We perform multiple iterations (100) of CAV estimation experi-
ments for robust concept definition. We decide upon the number
of iterations through exhaustive experimentation as reported in
section 5. In each iteration we use 100 rendered images per set with
varying albedo for Cp, and 44 images with varying illumination
for Cp,;. All images are resized to 256 X 256 dimensions. With each
iteration we perform hypothesis significance testing (double sided
t-test with p = 0.01 kept same as [23]) and average over the passing
significant CAVs.

4.3 Experimental Details

We analyze our framework for different scenarios by enumerating

over a combination of various experimental conditions:

o Layer Selection: Original CAV sensitivity can be evaluated for
any layer of the model. In our IID adaptation, we restrict to the last
layer sensitivities. There are two reasons for this design choice.
First, the IID concepts which we are trying to capture are high-
level abstractions which are better represented by the deeper
layers. Second, different IID methods have different number of
layers making the choice of comparable layers difficult across
architectures e.g. IWW and CGIID both have separate branches
of R and S while USI3D has two generators of R and S styles plus
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a content encoder. Computing CAV sensitivities on the last layer
makes our method more stable and architecture agnostic.

e Scene Domain: We analyze our technique under both synthetic
and natural domains by choosing appropriate concept sets.

o Concept Scene Complexity: We estimate CAVs for both sim-
ple and complex scene settings with single object and multiple
objects respectively.

e Concept Albedo Complexity: We render A, concept sets with
two albedo complexity settings: Simple RGB base color change
and texture variation. In the first case, each object has one ran-
domly assigned solid RGB color. In the second case, we apply a
random texture map from DTD dataset [10] on each object.

Overall, we have four experimental settings for each concept: Textured-
Simple, Textured-Complex, RGB-Simple and RGB-Complex. We per-
form comprehensive experiments by forming multiple concept sets
under each of above categories. Specifically, for Cp, concept we
have 10 scenes rendered under 4 different illumination directions
with 3 illumination temperatures ¢t € {2500, 4500, 6500}, hence
10 X 3 X 4 = 120 concept sets each containing 100 albedo/texture
variation images. Similarly for C5, we have 10 scenes X 3 tempera-
tures x 3 albedos = 90 concept sets, each with 44 (22 left + 22 right)
illumination direction variation images.

5 RESULTS AND ANALYSIS

We report our CSM disentanglement scores (CSMs, CSMR) for Ca,
and Cy, in Table 1 after averaging over all the corresponding con-
cepts sets. From Table 1, we find that USI3D does best disentangle-
ment of albedo from S (best S albedo invariance thus highest CSMs)
while CGIID does best disentanglement of illumination information
from R (highest CSMg) amongst the three models. We also show
illustrative qualitative results in Figure 4 which show predicted R
and S from the three methods for the same scene under 2 different
albedo (Ap and A;) and illumination (I and I;) settings.

Performance in S albedo invariance: CSMg. Albedo varia-
tions for the same scene are rarely observed in the training sets.
Due to this, supervised methods like CGIID perform poorly on
CSMs metric compared to unsupervised IWW and USI3D. USI3D
being completely unsupervised performs best, followed by IWW
which is partially unsupervised (assuming constant reflectance over
time-lapse videos of varying illumination scenes). From Figure 4,
USI3D has least changes in S for Aa.

Performance in R illumination invariance: CSMg. CGIID
has significantly higher CSMp, in all the four experimental settings,
followed by TWW and then USI3D as shown in Table 1 and verified
from qualitative results in Figure 4 where CGIID observes least
changes in R for illumination variations. It also does well on real-
world concept sets as seen from Table 3 and qualitative results
Figure 6. The same trend is seen over complex scenes from ARAP
dataset Figure 5 and MIT Intrinsics [20] (shown in supplementary
pdf). This is because illumination variations are captured to some
extent in existing IID datasets and hence the concept Cp, can be
learned by supervision. Thus, CGIID being a completely supervised
network, performs well on CSMg metric. TWW being trained on
time-lapse videos of BigTime dataset [32] comes next, followed
by USI3D which is completely unsupervised and relies on style
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Figure 4: Illustrative qualitative results for albedo variation (first and second rows) and illumination variation (second and
third row) experiments. A;I; represent scene in albedo i and illumination j. For albedo variation (Ag — A1), USI3D [35] followed by IWW
[32] observes least changes in S (green) and thus is best in disentangling albedo information from S while CGIID [31] (magenta) is worst. For
illumination variation (Iy — I;) CGIID observes least changes in R (teal) having least leakage of shadows in R for all three rows while TWW
and USI3D have comparatively more shadow leakage (magenta). This is reflected in our CSMs and CSMp scores in Table 2 unlike in existing
metrics Table 4. (Best viewed in color.)

CSMs T CSMgr T WHDR | SAWAP% T
Model Textured RGB Textured RGB
Simple Complex Simple Complex CSMs T Simple Complex Simple Complex CSMr 1
IWW [32] 2.049 1.286 0.939 1.732 1.524 0.857 0.979 0.936 0.741 0.878 20.3 91.87
USI3D [35] 2 1.943 2.806 1.669 2.139 0.648 0.504 0.38 0.674 0.552 18.69 78.69
CGIID [31] 0.753 1.328 0.606 0.93 0.909 1.35 1.231 1.806 1.79 1.544 14.8 97.93

Table 1: Disentanglement quality: Quality of disentanglement for albedo variation (as measured by CSMs) and illumination variation (as
measured by CSMR). USI3D performs best in CSMs metric and CGIID the worst. The trend is reversed for the CSMg metric. Note: Best is
bold, second best is underlined.

CSMs T CSMR T
Temp Model Textured RGB —_— Textured RGB —_—
CSMs 1 CSMR T
Simple Complex Simple Complex Simple Complex Simple Complex

IWW [32] 1.735 1.112 0.894 1.426 1.292 1.021 1.098 0.994 0.757 0.968

2500  USI3D [35] 4.138 2.802 4.11 2.643 3.423 0.449 0.406 0.275 0.646 0.444
CGIID [31] 0.901 1.379 0.554 1.051 0.971 1.166 1.412 1.52 1.66 1.44

IWW [32] 1.995 1.544 0.955 1.877 1.593 0.805 0.979 0.886 0.771 0.86

4500  USI3D [35] 2.352 2.248 2.697 1.54 2.209 0.646 0.497 0.385 0.645 0.543
CGIID [31] 0.745 1.334 0.706 0.9 0.921 1.347 1.282 1.858 1.862 1.587

IWW [32] 2.5 1.248 0.965 1.969 1.671 0.763 0.879 0.93 0.693 0.816

6500  USI3D [35] 1.091 1.285 2.063 1.253 1.423 0.942 0.74 0.512 0.727 0.73
CGIID [31] 0.611 1.278 0.558 0.837 0.821 1.624 1.295 2.147 1.865 1.733

Table 2: Disentanglement quality in different temperatures: On an average a similar trend is followed across temperatures.

distributions of R and S. The same trend is seen in MIT Intrinsics = 2500 and 4500: USI3D>IIWWx»CGIID, while for T=6500, IWW is
[20] (shown in qualitative results in supplementary video). slightly better than USI3D (IWW>USI3D>CGIID). With an increase
in T, its occurrence gets rare in training sets. Thus, USI3D being an

Effect of different temperature settings. We show results on unsupervised method, does significantly better than its partially

different T in Table 2. For CSMg, the same trend is observed for T
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Figure 5: Illumination changes in ARAP dataset scenes: The first and second rows are bedroom scene in different illuminations (BR1,
BR2) while third and fourth are butterfly in different illuminations (BY1, BY2). For both the scenes CGIDD has least leakage of illumination
in R. In BR1 and BR2, the shadow information is leaked more in R for both TWW and USI3D (magenta), while it is leaked lesser for CGIDD
(green). From BY1— BY2, butterfly’s top wing has a drastic illumination change. CGIDD predicts this top wing’s albedo correctly to huge
extent(green) while IWW and USI3D have that illumination directly leaked in R (magenta)

Model MIW [36] PS [1] SR
Ril Si1 CSMgT Rl Si7 CSMg1

OWW [32] 0391 0.296 0.757 0.409  0.501 1.225 0.991

USI3D [35] 0.173  0.133 0.751 0.75 0.612 0.816 0.784

CGIID [31] 0.373  0.462 1.239 0.061  0.587 9.623 5.431

Table 3: Natural concept datasets: Similar to synthetic case in
Table 1, CGIID significantly performs the best in CSMg followed by
IIWW and USI3D on both natural image datasets. This shows no
significant shift between the two domains for CAV computation.

MSE| LMSE| D-SSIM LPIPS | [49]

Img Model

R N R N R N R S
IWW [32] 0.025 0.021 0.006 0.004 0.254  0.365 0.336 0.429
Aoly USI3D [35] 0.013 0.058  0.006 0.006  0.188 0.431  0.185  0.396
CGIID [31] 0.021 0.02  0.006 0.003 0.28 0.421 0.364  0.396

IWW [32] 0.035 0.041 0.011 0.011 0.261 0.456 0.362 0.439
Arly USI3D [35] 0.014 0.07 0.006 0.01 0.162 0.495 0.153 0.406
CGIID [31] 0.062 0.041 0.006 0.014 0.327 0.559 0.388 0.443

Table 4: Limitation of standard IID metrics: For two exemplar
images Aolp and A1l in Figure 4, USI3D exhibits best performance
for R although it contains shadow leakages. Whereas for the S
component, the metrics contradict each other.

supervised (IWW) and supervised (CGIID) counterparts. For T =
6500, TWW has slightly better CSMg, the reason being its train-
ing on illumination varying BigTime dataset having temperatures
in that range (most natural images are near 6500 T). For CSMg,
same overall ordering of models is observed across temperatures:
CGIID>IIWW>USI3D. Qualitative results for the same are given in
supplementary pdf.

Effect of number of CAV iterations. We experiment with
the number of iterations for stable CAV verification by t-testing as
pointed in subsection 3.1 and find that any iterations above 80 work
well (Figure 7). We thus take 100 as our number of cav iterations.

Comparison with existing metrics: R-S disentanglement.
Individual comparisons of R and $ with GT only consider how
close R, $ are to GT and do not consider disentanglement. R and
S closeness to GT does not guarantee disentanglement since the
reconstruction can be good enough but entain illumination-albedo
leakages. As shown in Table 4, R gets better MSE, LMSE, D-SSIM and
LPIPS [49] values but still has shadow leakages because it resembles
GT the most, except for pixels where shadows are there. USI3D on
the other hand, achieves best performance in R in terms of existing
metrics on MIT Intrinsics, ARAP as well as our synthetic concept
sets(given in Supplementary pdf), but it has clear illumination
leakages in R for which its score is penalised by our method which
gauges disentanglement.

WHDR and SAW AP% are not designed for measuring R-S dis-
entanglement by their very definition, which can be seen from
Table 1 where they don’t align with CSMg and CSM;g along with
qualitative results as shown in Figure 4, 5, 6. Ideally R, and S must
be disentangled by the definition of IID but must also resemble
GT. For example, though CGIID is best in terms of disentangling
illumination information from ﬁ, closeness of R to GT achieved
best by USI3D is important as well (Figure 4 Table 4). Hence, our
method must be combined with existing GT comparison metrics
for the most robust IID evaluation.

Cross-dataset performance USI3D has significantly lower per-
formance on SAW AP% metric which measures quality of $, but it
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Figure 7: Sensitivity scores with number of CAV iterations
for RGB-Simple concepts Ca,. Both sensitivity scores Ry, and Sp,,
plateau after 80 iterations for all three models. Note: S for USI3D
is constantly low since Ch,, is in-significant for its S.

exhibits best performance in terms of pixel-wise comparisons on
MIT Intrinsics[20], ARAP dataset[7], and our synthetic concept set
(shown in supplementary pdf). This highlights the issue of cross-
dataset performance evaluation inconsistency for the standard IID
metrics. On the other hand our proposed CSMg metric performs
consistently and exhibits the same trend in performance: CGIID >
IIWW > USI3D (see CSMpg in Table 1 and Table 3)

Limitations of our concept sensitivity based approach. Mod-
els can be sensitive to concepts in ways that are not desirable. For
example, a model might predict noisy R which keeps on changing
(as seen from black foggy artifacts in CGIID predictions Figure 4)
and get a high Ra, score. Similarly, artifacts in S might lead to high

(d) USI3D R

Figure 6: Real-world illumination change results: First two rows are images from Gourd scene (G) which belongs to PS [1] dataset, last
two rows are scene lobby (L) from MIW[36]. For G1 and G2, R illumination variance is most in USI3D (circular luminant) followed by TWW
while it is least by CGIID. Though CGIID is unable to predict good R for the dark background of G1 and G2, its foreground’s R is good. In
lobby scene (L1 and L2) USI3D has global intensity changes in R and IWW also has a more changes compared to CGIID which has lesser
changes (as seen in black bag on right). Thus CGIID’s R is less sensitive to A; followed by IIWW and then USI3D (which performs worst).

Avani Gupta, Saurabh Saini and P | Narayanan

(e) USI3D R (f) CGIID R (g) CGIID S

sensitivity. In such rare cases, usually R and S both have noise and
taking the ratios cancels out and gives a lower score to the model.

6 CONCLUSION

We presented Concept Sensitivity Metric, a framework that adapts
an ML interpretability method, to evaluate the quality of IID based
on its definition. The CSMg and CSMg metrics evaluate the disen-
tanglement of the recovered reflectance and shading. These metrics
overcome several shortcomings of the current IID evaluation strate-
gies. They are consistent over real-world and synthetic scenes and
have lesser dependence on the evaluation set as we use model’s
sensitivity towards concepts rather than direct pixel-to-pixel com-
parison with ground truth annotations.

Since these metrics measure the quality of the output and can
provide additional terms to the loss being minimized to improve
the IID calculations like in a fine-tuning step. We intend to work
on this in the future. The use of metrics defined for interpretability
in a loop to improve the performance on the original problem has
wide scope of applicability.

The approach underlying Concept Sensitivity Metric have wider
potential application beyond the IID problem. Choosing appropriate
concepts and their activations, CSM can be used to evaluate results
of image harmonization, style transfer, image enhancement, etc.
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